Supporting information

Surface having dual affinity for plasminogen and tissue

plasminogen activator: in situ plasmin generation and clot lysis.

Qi Liu,^a Dan Li,^{*a,b} Wenjun Zhan,^a Yafei Luan,^a Hui Du, ^a Xiaoli Liu,^a John L. Brash^{a,c} and Hong Chen^{*a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China

^bState Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, P.R. China.

^cSchool of Biomedical Engineering and Department of Chemical Engineering,

McMaster University, Hamilton, Ontario, Canada.

Synthesis of (3r,5r,7r)-adamantan-1-ylmethyl methacrylate

¹H NMR spectrum of AdaMA in CDCl₃ is shown in **Figure S1**. ¹H NMR (CDCl₃, 298 K, 400 MHz): δ (ppm) = 6.12 (s, 1H, CH₂=C-), 5.55 (s, 1H, CH₂=C-), 3.74 (s, 2H, -O-CH₂), 2.10-1.85 (m, 6H, -CH₃, -CH- group in AdaMA), 1.80-1.45 (m, 12H, -CH₂- group in AdaMA).

Figure S1 ¹H NMR spectrum of AdaMA in CDCl₃.

Synthesis of β-CD-(Lys)₇

The ¹H NMR spectrum of β-CD-(Lys)₇ in DMSO-*d*₆ is shown in **Figure S2**. ¹H NMR (DMSO-*d*₆, 298 K, 400 MHz): δ (ppm) =8.18 (s, 7 H, CO-NH-CH), 7.99 (s, 7 H, NCH=C), 7.74 (s, 14 H, CH₂-NH₂), 6.30-5.50 (m, O_{.2}H, O_{.3}H of β-CD), 5.08 (s, 14 H, C-CH₂-O), 4.98-4.68 (m, 14H, C_{.1}H of β-CD, NH-CH-CH₂), 4.15 (s, 14 H, C_{.6}H of β-CD), 3.90-3.15 (m, overlaps with HOD, C. ²H, C_{.3}H, C_{.4}H, C_{.5}H of β-CD). 2.98-2.65 (m, 14H, CH₂-CH₂-NH), 2.60-2.25 (m, overlaps with DMSO-*d*₆, CO-CH₂-CH₂, CH₂-CH₂-CO), 1.8-0.9 (m, 42H, NHCH-CH₂-CH₂, CH₂-CH₂-CH₂, CH₂-CH₂, CH₂-CH₂NH).

Figure S2 ¹H NMR spectrum of β -CD-(Lys)₇ in DMSO-d₆.

Characterization of copolymer

ol ⁻¹) (GPC)
10 ⁵ 1.97

Table S1 Molecular weight and composition of copolymer

^a Molar monomer feed ratio. ^b Molar composition of copolymer determined by ¹H NMR.

Regulation of Plg binding capacity

Figure S3 Plg adsorption from human plasma on PU-PHA-Pep/Lys surfaces with different molar composition of β -CD-(Lys)₇. Data are means \pm SD (n = 3).

Specific activity of plasmin

Figure S4 Specific activity of plasmin generated on the ε -lysine modified surfaces as determined using the chromogenic substrate S-2251. The surfaces were preloaded with t-PA and incubated in plasma for 1 h. Data are mean \pm SD, n =3.

Specific activity of t-PA

Figure S5 Specific activity of t-PA loaded on the PU surfaces as determined using the chromogenic substrate S-2251. The surfaces were preloaded with t-PA and immersed in TBS containing 0.06 mg·mL⁻¹ plasminogen. The change in absorbance of the solution at 405 nm (37°C) was recorded at 3 min intervals over the subsequent 1 h period. Data are mean \pm SD, n =3.