Supporting Information

A new bifunctional electrochemical sensor for hydrogen peroxide and nitrite based on a bimetallic metalloporphyrinic framework

Li-Mei Shi, Jing-Xiong Pan, Bo Zhou*, Xiaoqing Jiang*

Jiangsu Key Laboratory of New Power Batteries, National-Local Joint Engineering Research Center for Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, 1 Wenyuan Road, P. R. China

*Corresponding authors: Bo Zhou, Xiaoqing Jiang

E-mail: zhoubo@njnu.edu.cn, jiangxiaoqing@njnu.edu.cn

Phone number: +86 25 85891707

Fax: +86 25 85891767

Postal address: College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, 1 Wenyuan Road, P. R. China.

Fig. S1 TGA curve of as-prepared [Cu₂(Co-TCPP)(H₂O)₂]·0.5DMF·5H2O

Fig. S2 Amperometric responses of Cu-CoTCPP/GCE to successive addition of H_2O_2 in 4 mL N₂-saturated PBS (0.1 M, pH 7.0) at -0.25 V (A) and 0.85 V (B). The inset shows the current response to the H_2O_2 concentration.

Fig. S3 Amperometric responses of Cu-CoTCPP/GC electrode to successive addition of NaNO₂ in 4 mL N₂-saturated PBS (0.1 M, pH 7.0) at an applied potential of 0.85V. The inset shows the current response to the NaNO₂ concentration.

Fig. S4 CVs of MWCNT/GCE without H_2O_2 (a, red solid curve), with 0.5 mmol L⁻¹ H_2O_2 (b, black dash curve), Cu-CoTCPP/MWCN/GC electrode without H_2O_2 (c, blue solid curve), and with 0.5 mmol L⁻¹ H_2O_2 (d, black solid curve) in 4 mL N₂-saturated PBS (0.1 M, pH 7.0). The scan rate: 100 mVs⁻¹.

Fig. S5 The selectivity profile of electrode over interfering species of H_2O_2 (0.5 mmol L^{-1}), KNO₃ (0.5 mmol L^{-1}), Zn(Ac)₂ (0.5 mmol L^{-1}), MgCl₂ (0.5 mmol L^{-1}), Glu (0.5 mmol L^{-1}), UA (0.5 mmol L^{-1}) obtained at -0.25 V in N₂-saturated PBS (0.1 mol L^{-1} , pH 7.0).

Fig. S6 The selectivity profile of electrode over interfering species of NaNO₂ (0.5 mmolL⁻¹), KNO₃ (0.5 mmolL⁻¹), Zn(Ac)₂ (0.5 mmolL⁻¹), MgCl₂ (0.5 mmolL⁻¹), UA (0.5 mmolL⁻¹), Glu (0.5 mmolL⁻¹) obtained at 0.85 V in N₂-saturated PBS (0.1 mol L⁻¹, pH 7.0).

Fig. S7 The selectivity profile of electrode over interfering species of H_2O_2 (0.5 mmol L^{-1}), citric acid (0.5 mmol L^{-1}), DA (0.5 mmol L^{-1}), AA (0.5 mmol L^{-1}) obtained at - 0.25 V in N₂-saturated PBS (0.1 mol L^{-1} , pH 7.0).

Fig. S8 The selectivity profile of electrode over interfering species of NaNO₂ (0.5 mmolL⁻¹), citric acid (0.5 mmol L⁻¹), DA (0.5 mmol L⁻¹), AA (0.5 mmol L⁻¹) obtained at 0.85 V in N₂-saturated PBS (0.1 mol L⁻¹, pH 7.0).