Electronic Supplementary Information

Development of magnetic LuPO₄ microspheres for highly selective enrichment and identification of phosphopeptides for MALDI-TOF MS analysis

Xing-yu Long^{1,2}, Qun Song¹, Hong-zhen Lian^{1*}

 State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093, China
 Editorial Department of Journal, Guizhou Normal University, 180 Baoshan North Road, Guiyang 550001, China

*Corresponding author. Tel.: +86-25-83686075; fax: +86-25-83325180. E-mail: hzlian@nju.edu.cn (H. Z. Lian).

Part 1. Supporting figures

Fig. S1. SEM (left) and TEM (right) images of Fe_3O_4 (a, c), Fe_3O_4 (BiO_2 (b, d), respectively.

Fig. S2. EDX spectra of the prepared Fe_3O_4 , $Fe_3O_4@SiO_2$, $Fe_3O_4@Lu(OH)CO_3$ and $Fe_3O_4@LuPO_4$ microspheres (From top to down).

Fig. S3. MALDI-TOF MS spectra of phosphopeptides from tryptic digests of bovine β -casein and BSA (1:50 molar ratio) with different affinity materials. a. Without enrichment; b. Fe₃O₄; c. Fe₃O₄@SiO₂; d. Fe₃O₄@Lu(OH)CO₃; e. Fe₃O₄@LuPO₄; f. Commercial TiO₂. The data in parentheses represent *S/N* ratios.

Fig. S4. MALDI-TOF MS spectra of phosphopeptides from tryptic digests of bovine β -casein and BSA with Fe₃O₄@LuPO₄ microspheres affinity materials. Left: Without enrichment; Right: After enrichment. a. 1:0; b. 1:10; c. 1:20; d. 1:50. "*" β_1 , β_2 , β_3 , β_4 : Phosphopeptides; $[\beta_4]^{2+}$: Doubly charged; "#": Metastable ions; "^": Na⁺ adducted ions.

Fig. S5. MALDI-TOF MS spectra of a tryptic digests of bovine β -casein treated by Fe₃O₄@LuPO₄ microspheres. a. 2 pmol; b. 0.5 pmol; c. 0.2 pmol. The data in parentheses represent *S/N* ratios.

Fig. S6. Reusability test of Fe₃O₄@LuPO₄ affinity microspheres in enrichment of 10 pmol β -casein trypsin digest. a-c represent the 1st to 3rd reuse of the material.

Fig. S7. MALDI-TOF MS spectra of phosphopeptides from tryptic digests of fresh pure milk treated with different affinity materials. a. Without enrichment; b. Fe₃O₄@LuPO₄; c. Fe₃O₄@Lu(OH)CO₃. "*" β_1 , β_2 , β_3 : Phosphopeptides; $[\beta_3]^{2+}$: Doubly charged; "#": Metastable ions or Na⁺ adducted ions; "^": Non-phosphopeptides. The data in parentheses represent *S/N* ratios.

Fig. S8. MALDI-TOF MS spectra of human serum treated with $Fe_3O_4@LuPO_4$ affinity microspheres. a. Without enrichment; b. After enrichment. "*": Phosphopeptides; "#": Metastable ions phosphopeptides. The data in parentheses represent *S/N* ratio.

Part 2. Supporting tables

m/z	S/N	Position	Amino acid sequence (sites)
1545.99	32.56	HS1	D[pS]GEGDFLAEGGGVR (1P)
1562.05	22.46	β-(16-40)*	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR (4P)
1617.05	257.08	HS2	AD[pS]GEGDFLAEGGGVR (1P)
1660.41	14.22	α-S1(121-134)	VPQLEIVPN[pS]AEER (1P)
1927.23	184.18	α-S1(58-73)	DIG[pS]E[pS]TEDQAMEDIK (2P)
1951.49	140.96	α-S1(119-134)	YKVPQLEIVPN[pS]AEER (1P)
2061.69	305.65	β-(48-63)	FQ[pS]EEQQQTEDELQDK (1P)
2083.69	11.16	β-(48-63)^	FQ[pS]EEQQQTEDELQDK-Na (1P)
2431.89	36.39	β-(45-63)	IEKFQ[pS]EEQQQTEDELQDK (1P)
2555.94	21.43	β-(48-67)	FQ[pS]EEQQQTEDELQDKIHPF (1P)
2935.50	10.69	α-S1(50-73)	EKVNEL[pS]KDIG[pS]E[pS]TEDQAMEDIK (3P)
2984.09	27.98	β-(16-40)^	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR-Na (2P)
3042.06	13.68	β-(16-40)	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR (3P)
3122.04	162.86	β-(16-40)	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR (4P)
3144.01	10.31	β-(16-40)^	RELEELNVPGEIVE[pS]L[pS][pS][pS]EESITR-Na (4P)

Table S1. Identified phosphopeptides from proteolytic digests of β -casein and fresh pure milk, and human serum sample.

"[pS]/[pS]" shows phosphorylation on serine or probable; "Mo" indicates oxidation on methionine; "*" denotes doubly charged peak; "^" represents Na⁺ adducted ions peak.

m/z						-
Ma	$M_{ m b}$	M_{x}	<i>M</i> _c (Observed)	$M_{\rm c}$ ' (Calculated)	- r	T
2061.76	1963.76	1870.42	1965.32	1965.44	0.992	
3122.21	3024.21	2929.29	3027.05	3025.17	0.988	
3122.21	2926.21	2742.51	2929.62	2930.30	0.996	0.992
1617.05	1519.05	1426.99	1520.96	1520.96	0.991	
1545.99	1447.99	1356.20	1449.20	1449.88	0.993	

Table S2. Apparent and true m/z of metastable ions of phosphopeptides*

* Calculated by Eq. 1 (Harvey derivation formula). M_a : Precursor ion; M_b : Product ion; M_c : Metastable ion.

$$M_{x} = \frac{M_{b}^{2}}{M_{a}} \qquad r = \frac{M_{b} - M_{c} + \sqrt{M_{c}(M_{a} - 2M_{b} + M_{x})}}{(M_{c} - M_{x})}$$
$$M_{c}' = M_{a} \left[\frac{1 + \frac{M_{b}}{M_{a}}r}{(1 + r)}\right]^{2} \quad (1)$$

m/z	S/N	Position	Amino acid sequence
1037.46	6.45	BSA(310-318)^	SHCIAEVEK-Na
1154.58	24.08	β-(113-122)	VKEA[Mo]APKHK
1249.59	29.89	BSA(35-44)	FKDLGEEHFK
1416.68	27.95	BSA(569-580)	TV[Mo]ENFVAFVDK
1495.77	11.65	BSA(387-399)	DDPHACYSTVFDK

Table S3. High-abundant nonphosphopeptides from proteolytic digests of β -casein and BSA at molar ratio of 1:50.

"Mo" indicates oxidation on methionine; "^" represents Na⁺ adducted ions peak.

Table S4. High-abundant non-phosphopeptides from proteolytic digest of fresh pure milk (S/N > 60)

· · · ·			
m/z	S/N	Position	Amino acid sequence
1267.22	329.71	α-S1 (106-115)	YLGYLEQLLR
1384.19	235.25	α-S1(38-49)	FFVAPFPEVFGK
1759.30	92.96	α-S1(23-37)	HQGLPQEVLNENLLR
2185.37	250.43	α-S2(18-36)	TMEHVSSSEESIISQETYK
2315.30	61.33	α-S1 (148-166)	EPMIGVNQELAYFYPELFR