Supporting Information Available

Antibacterial and photochemical properties of cellulose nanofibers-titania nanocomposites loaded with two different types of antibiotic medicines

O.L. Galkina ^{ab}, K. Önneby^b, P. Huang^d, V.K. Ivanov^{e,f}, A.V. Agafonov^{a,f}, G.A. Seisenbaeva ^{b,c}, and V.G. Kessler ^{b,c}

^aInstitute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St.,1, Ivanovo, Russia, e-mails: <u>olga.galkina@slu.se,ava@isc-ras.ru;</u>

^bDepartment of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden, e-mails: <u>gulaim.seisenbaeva@slu.se,vadim.kessler@slu.se</u>

°CaptiGel AB, Virdings allé 32B, 75450 Uppsala, Sweden.

^d Molecular Biomimetics, Department of Chemistry – Ångström, Uppsala University, Box 523, SE 751 20, Uppsala, Sweden

^e Kurnakov Institute of General and Inorganic Chemistry, Leninskiiprosp. 31, Moscow, Russia, e-mail: van@igic.ras.ru

^f National Research Tomsk State University, 36 Lenin Av., Tomsk, 634050, Russia.

Surface modification

Cellulose nanofibers surface were modified by Phosphomycin and Tetracycline in amounts calculated to achieve uniform, single layer coverage. The surface of titania was estimated using simple mathematical model where the particles are spherical, uniform and homogenous. According to our assumption that drug bonded with the biopolymer through interaction with TiO_2 , we firstly calculated the total number of titania nanoparticles, which was added to the cellulose nanofibers, by following formula:

where m_{total} – total mass of TiO₂ particles (g), m_p – mass of the single TiO₂ particle (g).

The total surface area of titania nanoparticles grafted onto cellulose nanofibers can be estimated as follows:

$$S_{total} = N_{total} \cdot S_p$$

where N_{total} – total number of titania nanoparticles, S_p - surface of the single TiO₂ particle (nm²). Then, the amount of drug *n* (mol) can be found as follows:

$$n = S_{total} \cdot N_A / S$$

where S – area of functional group (nm²) and N_A is Avogadro number. The approximate area of 0.24 nm² per phoshponate group is commonly proposed in literature¹ and utilized by us in our previous papers^{2,3}.

	S.aureus		E.coli	
Sample	Concentration	Inhibition zone	Concentration	Inhibition zone
	(µg/disk)	(mm)	(µg/disk)	(mm)
CNF_TC_M0	1	23.5±2.9	1	14.5±1.7
	10	30.5±0.6	10	22.0±0.8
	50	34.0±1.8	50	27.3±1.7
	100	38.3±2.6	100	32.8±2.2
CNF_TiO2_TC_M1	1	19.3±3.4	1	9.3±2.1
	10	25.8±3.7	10	16.3±0.5
	50	32.5±4.7	50	21.0±1.4
	100	32.3±4.4	100	23.3±0.5
CNF_Phos_M0	10	28.5±3.2	50	25.0±0.0
	50	42.0±7.2	50	
	100	45.8±5.5	100	29.0±2.8
CNF_TiO2_Phos_M2	10	na*	50	na
	50	na	50	
	100	na	100	na

Table S1 Antimicrobial activity of samples against *S.aureus* and *E.coli*. The means (mm) \pm standard deviation for at least three replicates are illustrated. (*na = no activity)

Table S2 The antimicrobial effect of samples against S.aureus obtained from the liquid broth assay

Sample	Concentration (µg/ml)	Time delay (h)	Growth inhibition (%)		
CNF_TC_M0	1	0	100		
CNF_TiO ₂ _TC_M1	1	0	100		
CNF_Phos_M0	100	0	100		
	100	0*	100		
		0	96.6		
$CNF_TiO_2_Phos_M2$		12	99.2		
		18	98.1		
		24	96.6		
(*) with addition of citrate buffer (pH=6,0.03M)					

Figure FS1 FTIR of the CNF_TiO₂_Phos_M2 compared to CNF_TiO₂ and PCNF.

Figure FS2 UV-Vis spectrum of the $CNF_TiO_2_Phos_M2$ material in the form of thin transparent film.

Figure FS3 High resolution TEM view of the applied TiO2 nanoparticles (reprinted with permission from Angew. Chem. Int. Ed. 2008, 47, 8506–8509)

Figure FS4 The stability demonstration for solutions of Rhodamine B in the presence of the applied TiO2 nanoparticles (reprinted with permission from the supplementary materials to Angew. Chem. Int. Ed. 2008, 47, 8506–8509)

References

1. C. W. Beier, M. A. Cuevas, R. L. Brutchey, *Langmuir*, 2009, 26, 5067.

2. R. Pazik, R. Tekoriute, S. Håkanson, G.A. Seisenbaeva, R. Wiglusz, W. Strek, Y.K. Gun'ko, Kessler V.G., *Chem. Eur. J.*, 2009, 15, 6820

3. R. Pazik, R. Andersson, L. Kepinski, J.M. Nedelec, V. G. Kessler, G. A. Seisenbaeva, J. Phys. Chem. C, 2011, 115, 9850.