Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Electrospun nanofibrous membranes incorporating imidazole-appended *p*-phenylene-Cu(II) ensemble as a fluoroprobe for detection of His-proteins

Ka Young Kim,[‡] Sung Ho Jung[‡] and Jong Hwa Jung^{*}

Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University, Jinju 660-701 Korea; E-mail: jonghwa@gnu.ac.kr

Scheme S1. Synthetic route of compound 1.

Fig. S1 Nitrogen adsorption-desorption isotherms for the; (-•–) IP-Cu-NM (PMMA: 10 wt%, 1: 0.025 g, Cu²⁺: 1 equiv.) at 77K.

Fig. S2 Fluorescence microscopic images of IP-Cu-doped single PMMA nanofiber (PMMA: 10 wt%, 1: 0.025 g) prepared with different concentrations of Cu(NO₃)₂: (A) 0 equivalent, (B) 0.66 equivalent, (C) 1.0 equivalent, and (D) 1.5 equivalent. Scale bars are 20 μ m.

Fig. S3 Plot of fluorescence intensity against various histidine concentration (0~25 μ M).

Fig. S4 Fluorescence spectra of IP-Cu-NM (PMMA: 10 wt%, 1: 0.025 g, Cu^{2+} : 1 equiv.) with various concentrations of His (0 ~2.0 ppm) for measuring limit of detection.

Fig. S5 (A) Fluorescence spectra of IP-Cu-NM upon addition of histidine in binary systems. (B) Fluorescence intensity changes of IP-Cu-NM (PMMA: 10 wt%, 1: 0.025 g, Cu²⁺: 1 equiv.) by dropping a mixture of histidine (15 μ M) and various amino acids (15 μ M).

Fig. S6 SEM image of (A) IP-Cu-NM after dropping His(15 μ M) and (B) its fluorescence microscopic image (right).

Fig. S7 (A) Fluorescence spectra of IP-Cu-NM (PMMA: 10 wt%, 1: 0.025 g, Cu²⁺: 1 equiv.) upon addition of histidine aqueous solution(15 μ M) at various pH values. (B) Fluorescence photograph of histidine aqueous solution at various pH onto IP-Cu-NM (PMMA: 10 wt%, 1: 0.025 g, Cu²⁺: 1 equiv.) after microarray treatment.

Fig. S8 (A) Graph of fluorescence intensity against cycle number to highlight the reversible switching behavior of IP-Cu-NM (PMMA: 10 wt%, 1: 0.025 g, Cu²⁺: 1 equiv.) with cycling different solution. (B) Fluorescence spectra of IP-Cu-NM measured by cycling two different solutions (25 μ M histidine, 25 μ M Cu(NO₃)₂).

Fig. S9 (A) Fluorescence spectra of IP-Cu-NM (PMMA: 10 wt%, 1: 0.025 g, Cu²⁺: 1 equiv.) with His(15 μ M) according to response time. (B) Plot of fluorescent intensity change of IP-Cu-NM according to response time at 469 nm.

 Table S1 Proteins sequences used in this study.

PROTEIN	SEQUENCE
ALDOLASE (158 KDA)	Fructose-1,6-Bisphosphate Aldolase From Rabbit Muscle In Complex With A C-Terminal Peptide Of Wiskott-Aldrich Syndrome Protein.
	PHSHPALTPEQKKELSDIAHRIVAPGKGILAADESTGSIAKRLQSIGTENTEENRRFYR QLLLTADDRVNPCIGGVILFHETLYQKADDGRPFPQVIKSKGGVVGIKVDKGVVPLA GTNGETTTQGLDGLSERCAQYKKDGADFAKWRCVLKIGEHTPSALAIMENANVLA RYASICQQNGIVPIVEPEILPDGDHDLKRCQYVTEKVLAAVYKALSDHHIYLEGTLLK PNMVTPGHACTQKYSHEEIAMATVTALRRTVPPAVTGVTFLSGGQSEEEASINLNAI NKCPLLKPWALTFSYGRALQASALKAWGGKKENLKAAQEEYVKRALANSLACQG KYTPSGQAGAAASESLFISNHAY
RIBONUCLEA	ribonuclease A, partial [Bos taurus]
SE A (13.7 KDA)	PSLGKETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHESLA DVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKTTQANKHIIV ACEGNPYVPVHFDASV Tetragonal Crystal Structure Of Native Horse Spleen Ferritin.
FERRITIN (440 KDA)	SSOIDONVSTEVEA AVNDI VNI VI DASVTVI SI GEVEDDDDVAI EGVCHEEDELAEE
	KREGAERLLKMQNQRGGRALFQDLQKPSQDEWGTTLDAMKAAIVLEKSLNQALLD LHALGSAQADPHLCDFLESHFLDEEVKLIKKMGDHLTNIQRLVGSQAGLGEYLFERL TLKHD
	thyroglobulin precursor [Bos taurus]
THYROGLOB ULIN (669 KDA)	MALALWVFGLLDLICLASANIFEYQVDAQPLRPCELQRERAFLKREDYVPQCAEDG SFQTVQCGKDGASCWCVDADGREVPGSRQPGRPAACLSFCQLQKQQILLSSYINSTA TSYLPQCQDSGDYSPVQCDLRRRQCWCVDAEGMEVYGTRQQGRPARCPRSCEIRN RRLLHGVGDRSPPQCSPDGAFRPVQCKLVNTTDMMIFDLVHSYSRFPDAFVTFSSFR SRFPEVSGYCYCADSQGRELAETGLELLLDEIYDTIFAGLDLASTFAETTLYRILQRRF LAVQLVISGRFRCPTKCEVERFAATSFRHPVVPSCHPDGEYQAAQCQQGGPCWCVD SRGQEIPGTRQRGEPPSCAEDQSCPSERRRAFSRLRFGPSGYFSRRSLLAPEGPVSQ RFARFTASCPPSIKELFLDSGIFQPMLQGRDTRFVAPESLKEAIRGLFPSRELARLALQ FTTNAKRLQQNLFGGRFLVKVGQFNLSGALGTRGTFNFSHFFQQLGLPGFQDGRAL ADLAKPLSVGLNSNPASEAPKASKIDVALRKPVVGSFGFEVNLQENQNALQFLSSFL ELPEFLLFLQHAISVPEDIARDLGDVMEMVFSSQGCGQAPGSLFVPACTAEGSYEEV QCFAGDCWCVDAQGRELAGSRVRGGRPRCPTECEKQRARMQSLLGSQPAGSSLFVP ACTSKGNFLPVQCFNSECYCVDTEGQPIPGTRSALGEPKKCPSPCQLQAERAFLGTV RTLVSNPSTLPALSSIYIPQCSASGQWSPVQCDGPPEQAFEWYERWEAQNSAGQALT PAELLMKIMSYREAASRNFRLFIQNLYEAGQQGIFPGLARYSSFQDVPVSVLEGNQT QCGGNVFLEPYLFWQILNGQLDRYPGPYSDFSAPLAHFDLRSCWCVDEAGQKLEGT RNEPNKVPACPGSCEEVKLRVLQFIREAEEIVTYSNSSRFPLGESFLAAKGIRLTDEEL AFPPLSPSRETFLEKFLSGSDYAIRLAAQSTFDFYQRRLVTLAESPRAPSPVWSSAYLP QCDAFGGWEPVQCHAATGHCWCVDGKGEYVPTSLTARSRQIPQCPTSCERLRASGL LSSWKQAGVQAEPSPKDLFIPTCLETGEFARLQASEAGTWCVDPASGEGVPPGTNSS AQCPSLCEVLQSGVPSRRTSPGYSPACRAEDGGFSPVQCDPAQGSCWCVLGSGEEVP GTRVAGSQPACESPQCPLPFSVADVAGGAILCERASGLGAAAGQRCQLRCSQGYRS AFPPEPLLCSVQRRRWESRPPQPRACQRPGFWQTLQTQAQFQLLLPLGKVCSADYSG LLLAFQVFLLDELTARGFCQIQVKTAGTPVSIPVCDDSSVKVECLSRERLGVNTWKL QLVDAPASLPDLQDVEEALAGKYLAGRFADLIQSGTFQLHLDSKTFSADTSIRFLQG DRFGTSPRTQFGCLEGFGRVVAASDASQDALGCVKCPEGSYFQDEQCIPCPAGFYQE QAGSLACVPCPEGRTTVYAGAFSQTHCVTDCQKNEVGLQCDDSQYRASQRDRTS GKAFCVDGEGRRLPWTEAEAPLVDAQCLVMRKFEKLPESKVIFSADVAVMVRSEVP GSESSLMQCLADCALDEACGFLTVSTAGSEVSCDFYAWASDSIACTTSGRSEDALGT SQATSFGSLQCQVKVRSREGDPLAVYLKKGQEFTTTGQKRFEQTGFQSALSGMYSPV TFSASGASLAEVHLFCLLACDHDSCCDGFILVQVQGGPLLCGLLSSPDVLLCHVRDW

RDPAEAQANASCPGVTYDQDSRQVTLRLGGQEIRGLTPLEGTQDTLTSFQQVYLWK DSDMGSRSESMGCRRDTEPRPASPSETDLTTGLFSPVDLIQVIVDGNVSLPSQQHWLF KHLFSLQQANLWCLSRCAGEPSFCQLAEVTDSEPLYFTCTLYPEAQVCDDILESSPKG CRLILPRRPSALYRKKVVLQDRVKNFYNRLPFQKLTGISIRNKVPMSDKSISSGFFECE RLCDMDPCCTGFGFLNVSQLKGGEVTCLTLNSLGLQTCSEEYGGVWRILDCGSPDT EVRTYPFGWYQKPVSPSDAPSFCPSVALPALTENVALDSWQSLALSSVIVDPSIRNFD VAHISTAAVGNFSAARDRCLWECSRHQDCLVTTLQTQPGAVRCMFYADTQSCTHSL OAONCRLLLHEEATYIYRKPNIPLPGFGTSSPSVPIATHGOLLGRSOAIOVGTSWKPV DQFLGVPYAAPPLGEKRFRAPEHLNWTGSWEATKPRARCWQPGIRTPTPPGVSEDC LYLNVFVPQNMAPNASVLVFFHNAAEGKGSGDRPAVDGSFLAAVGNLIVVTASYRT GIFGFLSSGSSELSGNWGLLDQVVALTWVQTHIQAFGGDPRRVTLAADRGGADIASI HLVTTRAANSRLFRRAVLMGGSALSPAAVIRPERARQQAAALAKEVGCPSSSVQEM VSCLRQEPARILNDAQTKLLAVSGPFHYWGPVVDGQYLRETPARVLQRAPRVKVDL LIGSSQDDGLINRAKAVKQFEESQGRTSSKTAFYQALQNSLGGEAADAGVQAAATW **YYSLEHDSDDYASFSRALEQATRDYFIICPVIDMASHWARTVRGNVFMYHAPESYS** HSSLELLTDVLYAFGLPFYPAYEGQFTLEEKSLSLKIMQYFSNFIRSGNPNYPHEFSRR APEFAAPWPDFVPRDGAESYKELSVLLPNRQGLKKADCSFWSKYIQSLKASADETK DGPSADSEEEDQPAGSGLTEDLLGLPELASKTYSK