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Figure S1. The synthesis process and chemical structure of (A) HBMP and (B) PDR.
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Figure S2. Particles size distributions of YMSN (A) and YMSN-HBMP-PDR-FA (B) 

nanoparticles via dynamic light scattering (DLS) analysis. 
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Figure S3. Physical property characterizations: (A) pore size (B) and volume 

distribution and (C) zeta potential values of various functionalized YMSN, 

respectively.
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Figure S4.  FTIR spectra of  (A) YMSN, (B) YMSN-COOH, (C) YMSN-S-S-NH2, (D) 

YMSN-HBMP, (E) YMSN-HBMP-PDR, and (F) YMSN-HBMP-PDR-FA, respectively. 

Figure S4 shows the FTIR spectra of different substances. YMSN displayed a 

strong absorption signal at 1060 cm-1, which was assigned to asymmetric stretching 

of Si-O-Si bridges. Peaks at 3431 cm-1 and 1636 cm-1 were attributed to physically 

adsorbed water molecules in YMSN (Figure S4 a). After conjugation with 3-
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(triethoxysilyl) propylsuccinic anhydride (TSPSA), distinctive absorption peak at 1716 

cm-1 (C=O) was observed (Figure S4 b), when comparing with that of YMSN. The 

results indicate that YMSN-COOH was successfully synthesized. After modification 

with cystamine dihydrochloride, the carboxyl groups signals (around 1716 cm-1) were 

disappeared in the spectrum of disulfide bond-linked YMSN-COOH (YMSN-S-S-NH2) 

(Figure S4 c). The intensities of peaks at 1644 cm-1 and 1551 cm-1 were enhanced, 

which was attributed to the further introduction of amideⅠ and amide Ⅱ groups 

after reacting with cystamine molecules. The results indicate that disulfide bonds 

were covalently conjugated to YMSN.

For YMSN-HBMP (Figure S4 d), a discernable peak at 1697 cm-1 (C=O) was 

observed when comparing to YMSN-S-S-NH2. Moreover, the amideⅠ and amide Ⅱ 

peaks of YMSN-HBMP slightly shifted from 1644 cm-1 and 1551 cm-1 to 1641 cm-1 and 

1576 cm-1, respectively. The results suggest that the YMSN-HBMP was successfully 

fabricated. 

After modification with Pd template rotaxane ligand (PDR), the overtone bands 

appearing at the range of 2800-1800 cm-1 (dash circle) were observed, which was 

assigned to the benzene derivative molecules deriving from PDR. The result was 

consistent with previous studies. S1, S2 Furthermore, the C=O and amide peaks of 

YMSN-HBMP-PDR (Figure S4 e) were slightly shifted to 1716 cm-1, and 1642 cm-1, 

1567 cm-1, respectively. The results imply that the PDR molecules were covalently 

conjugated to YMSN-HBMP-PDR molecules.

After reaction with FA, the peak at 1453 cm-1 was assigned to the stretching of 
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benzyl groups in the FA unit (Figure S4 f), which was consistent with previous studies. 

S3, S4 Meanwhile, the C=O peak of YMSN-HBMP-PDR-FA obviously shifted from 1716 

cm-1 to 1696 cm-1, owing to the introduction of C=O group derived from FA. The 

distinctive absorption peak at 3074 cm-1 was contributed to the stretching of -OH 

groups from FA. The distinctive absorption peak at 1608 cm-1 was derived from the 

C–N stretching of the –C(NH2) groups of FA molecules, which was consistent with a 

previous report. S5 Moreover, the amide peaks of YMSN-HBMP-PDR-FA was 

significantly shifted to 1648 cm-1 and 1550 cm-1, owing to the introduction of 

ethylenediamine between YMSN-HBMP-PDR and FA. It demonstrates that the YMSN-

HBMP-PDR-FA was successfully synthesized.
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Figure S5. 1HNMR spectra (400 MHz, CDCl3 ) of (A) YMSN-S-S-NH2, (B) YMSN-HBMP, 

(C) YMSN-HBMP-PDR, and (D) YMSN-HBMP-PDR-FA, respectively. 
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For YMSN-S-S-NH2, distinctive peaks at 2.75-2.96 (2H), and 2.03 (2H) ppm were 

observed (Figure S5 a). Those peaks were attributed to the introduction cystamine 

dihydrochloride molecules, which was consistent with a previous report. S6 After 

further coupling with HBMP, significant absorption peak at 3.7-3.71 was observed 

and assigned to the linker between YMSN-S-S-NH2 and HBMP. Moreover, distinctive 

peaks of 2.72, 2.03-2.08 and 4.31 ppm were observed when comparing with YMSN-

S-S-NH2 (Figure S5 b), which was attributed to the introduction HBMP. Furthermore, 

after modification with PDR, the peak at 4.61 ppm was assigned to the newly formed 

linkage between YMSN-HBMP and PDR. While the distinctive peaks of 2.01-2.16 and 

2.68-2.7 ppm were noticed and assigned to the introduction of PDR (Figure S5 c). The 

result suggests that YMSN-HBMP-PDR was successfully synthesized. Finally, after 

reaction with FA, the peak at 2.56 was assigned to the covalent bond linker between 

YMSN-HBMP-PDR and folic acid molecules. Furthermore, the distinctive peaks at 

0.86 (m), 2.67 (i), 2.86 (j) were attributed to the conjugated FA molecules (Figure S5 

d). 
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Figure S6. The quantification analysis of nanoparticles in HepG2 cells after treating 

with YMSN@FITC and YMSN-HBMP-PDR-FA@FITC (0.286 mg/mL) for 6, 12 and 24 h, 

respectively. Error bars represent means ± SD (n=4), **p < 0.01. 
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Figure S7. (A) Flow cytometry analysis of HepG2 cells after culture with PBS 

(control,Ⅰ) and incubation with 0.286 mg/mL of YMSN (Ⅱ), 20 μg/mL of DOX (Ⅲ), 

YMSN@DOX (0.286 mg/mL,Ⅳ) and YMSN-HBMP-PDR-FA@DOX (0.286 mg/mL,Ⅴ) at 

37 °C for 24 h; and (B) Flow cytometry analysis of HepG2 cells apoptosis after culture 

with various concentrations of YMSN-HBMP-PDR-FA@DOX for 24 h.
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Figure S8. Energy dispersive spectrometer analysis (A and B) of Si element in major 

organs/tissues (a: tumor, b: heart; c: liver; d: spleen; e: lung and f: kidney) of mice 

after treatment with YMSN-HBMP-PDR-FA@DOX for 20 days, respectively. Error bars 

represent means ± SD (n=3), **p < 0.01. 
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Figure S9. The quantitative Si X-ray photoelectron spectroscopy analysis (A and B) of 

major tissues/organs (a: tumor, b: heart; c: liver; d: spleen; e: lung and f: kidney) of 

mice after treatment with YMSN-HBMP-PDR-FA@DOX for 20 days, respectively. 

Error bars represent means ± SD (n=3), **p < 0.01.
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Figure S10. The hemolysis assays of RBCs treated with difference nanoparticles 

within various concentrations.
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Table S1. BET and BJH parameters of YMSN, YMSN-HBMP and YMSN-HBMP-PDR-FA 

nanoparticles.

Materials SBET (m2/g) VP (cm3/g) BJH  WBJH (Å)

YMSN 877.2836 1.124519 51.2728

YMSN-HBMP 157.8842 0.303856 35.8643

YMSN-HBMP-PDR-FA 69.7002 0.12229 16.4662
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Table S2. Zeta potentials of different nanoparticles.

Materials Zeta potential (mV)

YMSN-COOH -27.4±4.41

YMSN-S-S-NH2 30.3±4.47

YMSN-HBMP -29.1±3.06

YMSN-HBMP-PDR -29.4±2.28

YMSN-HBMP-PDR-FA -1.396±0.86

Reduced YMSN-HBMP-PDR-FA -15.1±2.24
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