Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Biodegradable citrate-based polyesters with S-nitrosothiol functional groups for nitric oxide release

J. P. Yapor,^a A. Lutzke,^a A. Pegalajar-Jurado,^a B. H. Neufeld,^a V. B. Damodaran,^{a†} M. M. Reynolds^{*a,b}

^aDepartment of Chemistry and ^bSchool of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA. [†]Current address: New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ 08854, USA.

*Corresponding author. E-mail: melissa.reynolds@colostate.edu

Table of Contents

Figure S1. ¹ H-NMR spectrum of poly(citric-co-maleic acid-co-1,8-octanediol) (PCMO)	1
Figure S2. ¹ H-NMR spectrum of PCMO-cysteamine	1
Figure S3. ¹ H-NMR spectrum of PCMO-ethyl cysteinate	2
Figure S4. FTIR-ATR spectra of PCMO-cysteamine and PCMO-cysteamine-NO	2
Figure S5. FTIR-ATR spectra of PCMO-ethyl cysteinate and PCMO-ethyl cysteinate-NO	3
Figure S6. UV-Vis spectra of PCMO-cysteamine-NO	3
Figure S7. UV-Vis spectra of PCMO-ethyl cysteinate-NO	4
Table S1. Degradation study data	4

Figure S1. ¹H NMR spectrum of PCMO. ¹H NMR δ_H/ppm (400 MHz, DMSO-d₆): 1.20-1.65 (-(CH₂)₆-), 2.66-2.76 (-CH₂CO₂-), 3.95-4.03 (-OCH₂-), 6.35 (-HC=CH-), 12.6 (-CO₂H).

Figure S2. ¹H NMR spectrum of PCMO-cysteamine. ¹H NMR δ_{H} /ppm (400 MHz, DMSO-d₆): 1.20-1.65 (-(CH₂)₆-), 2.66-2.76 (-CH₂CO₂-), 2.98 (-CH₂SH), 3.22 (-(CO)NHCH-), 3.95-4.03 (-O-CH₂-), 6.35 (-HC=CH-), 7.82-7.92 (-(CO)NH-).

Figure S3. ¹H NMR spectrum of PCMO-ethyl cysteinate. ¹H NMR δ_{H} /ppm (400 MHz, DMSO-d₆): 1.18-1.22 (-CH₃) 1.20-1.65 (-(CH₂)₆-), 2.66-2.76 (-CH₂CO₂-), 3.70 (-CH₂SH), 4.42 (-(CO)NHCH-), 3.95-4.03 (-OCH₂-), 6.35 (-HC=CH-), 7.84-7.94 (-(CO)NH-).

Figure S4. FTIR-ATR spectra of PCMO, PCMO-cysteamine, and PCMO-cysteamine-NO.

Figure S5. FTIR-ATR spectrum of PCMO, PCMO-ethyl cysteinate, and PCMO-ethyl cysteinate-NO.

Figure S6. UV-Vis spectrum of PCMO-cysteamine-NO in DMSO. **Inset**: Diffuse reflectance UV-Vis spectrum. The spectra depict the characteristic transitions of S-nitrosothiols at 335 ($n_0 \rightarrow \pi^*$) and 550 nm ($n_N \rightarrow \pi^*$). Diffuse reflectance was used to identify the peak corresponding to the $n_N \rightarrow \pi^*$ transition since the small molar extinction coefficient prevents unambiguous solution-phase measurements within the solubility range of the polymer.

Figure S7. UV-Vis spectrum of PCMO-ethyl cysteinate-NO in DMSO. **Inset:** Diffuse reflectance UV-Vis spectrum. The spectra depict the characteristic transitions of S-nitrosothiols at 336 ($n_0 \rightarrow \pi^*$) and 549 nm ($n_N \rightarrow \pi^*$). Diffuse reflectance was used to identify the peak corresponding to the $n_N \rightarrow \pi^*$ transition since the small molar extinction coefficient prevents unambiguous solution-phase measurements within the solubility range of the polymer.

Table S1. Hydrolytic degradation of PCMO and S-nitrosated derivatives.

Material	Initial	Week 1	Week 2	Week 3	Week 4	
РСМО	100	88.5 ± 0.7	77.4 ± 0.1	12.1 ± 3.0	1.70 ± 0.5	
PCMO-CysAm-NO (2a)	100	77.7 ± 1.1	69.5 ± 1.1	56.7 ± 1.4	47.2 ± 3.8	
PCMO-EtCys-NO (3a)	100	59.6 ± 1.1	57.2 ± 1.7	52.4 ± 2.0	48.6 ± 1.4	

% Weight Remaining

Hydrolytic degradation of the S-nitrosated materials was evaluated under physiological conditions (pH 7.4, 37 °C) in 10 mM PBS over 4 weeks. Each week, the buffer was replaced and the materials were lyophilized for 24 h before data collection. For all experiments, $n \ge 3$ and results are reported as the mean \pm SD.