Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Design of Silk-Vaterite Microsphere Systems as Drug Carriers with pHresponsive Release Behavior

Shanshan Liu^{a,b}, Lijie Liu^{a,b, #}, Liying Xiao^{a,b}, Qiang Lu^{a,b,*}, Hesun Zhu^c, David L Kaplan^{a,d}

^aNational Engineering Laboratory for Modern Silk & Collaborative Innovation Center

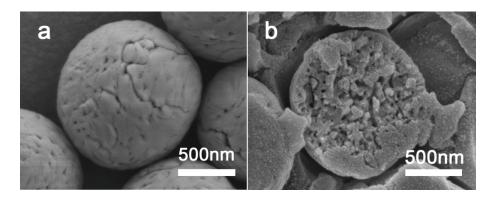
of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123,

People's Republic of China

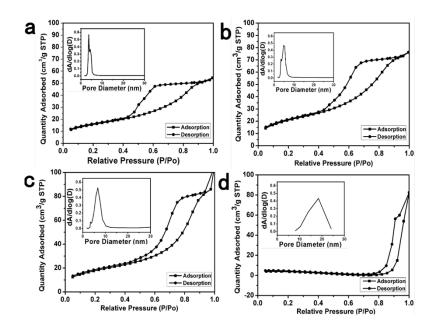
^bCollege of Textile and Clothing Engineering, Soochow University, Suzhou 215123,

People's Republic of China

^cResearch Center of Materials Science, Beijing Institute of Technology,


Beijing100081, People's Republic of China

^d Department of Biomedical Engineering, Tufts University, Medford, MA02155, USA


#The author has the same contribution with the first author

Corresponding author:

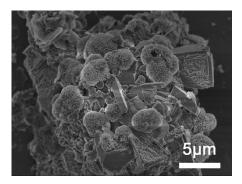

*Qiang Lu, Tel: (+86)-512-67061649; E-mail: Lvqiang78@suda.edu.cn

Figure S1. Morphological changes of silk-vaterite microspheres after treatment at 350°C for 6 h: (a) Surface images of the treated microspheres and (b) Cross-section images of the treated microspheres. Significant fusion of vaterite nanoparticles was observed after the treatment.

Figure S2. Nitrogen adsorption-desorption of silk-vaterite microspheres after the different thermal treatments. The samples were as follows: (a) M-0; (b) M-300; (c) M-305; and (d) M-310. The pore size increased while the surface area of the microspheres increased and then decreased following the increase of treatment temperature and time.

Figure S3. Typical microstructures of DOX-loaded silk-vaterite microspheres when the loaded DOX released in PBS solution for 8 days. The vateritecalcite/hydroxyapatite transition appeared in the drug-release process.