Supporting information

# Self-assembled Micelles of PEG-Poly(Disulfide Carbamate Amine) Copolymers for Intracellular Dual-Responsive Drug Delivery

Chao Lin<sup>a\*</sup>, Bo Lou<sup>a</sup>, Jie Zhao<sup>a</sup>, Rong Jin<sup>b</sup>, Peng Zhao<sup>a</sup>, Jianbo Li<sup>c</sup>, and Jie Ren<sup>c</sup>

<sup>a</sup> Shanghai East Hospital, The Institute for Biomedical Engineering and Nanoscience, Tongji

University School of Medicine, Tongji University, Shanghai 200092, PR China.

<sup>b</sup> Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, PR China.

<sup>c</sup> Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, P.R. China.

Tel: 0086-21-65988029; Fax: 0086-21-65983706-0;

\* Corresponding authors.

E-mail: chaolin@tongji.edu.cn

### 1. <sup>1</sup>H NMR spectra of PEG-SSPUA copolymers

#### a) PEG-SSMDE

<sup>1</sup>H NMR (D<sub>2</sub>O)  $\delta$  (ppm)= 4.33 (SSCH<sub>2</sub>CH<sub>2</sub>); 3.65 (CH<sub>2</sub>CH<sub>2</sub>O); 3.55 (OCONHCH<sub>2</sub>); 3.38 (CH<sub>2</sub>N(CH<sub>3</sub>)CH<sub>2</sub>); 3.00 (CH<sub>2</sub>N(CH<sub>3</sub>)CH<sub>2</sub>); 2.95 (SSCH<sub>2</sub>CH<sub>2</sub>).



#### b) PEG-SSPDA

<sup>1</sup>H NMR (D<sub>2</sub>O) δ (ppm)= 4.32 (SSCH<sub>2</sub>CH<sub>2</sub>); 3.76 (NCH<sub>2</sub>CH<sub>2</sub>N); 3.65 (CH<sub>2</sub>CH<sub>2</sub>O); 3.57 (OCONHCH<sub>2</sub>); 3.45 (OCONHCH<sub>2</sub>CH<sub>2</sub>); 2.97 (SSCH<sub>2</sub>CH<sub>2</sub>).



#### c) PEG-SSBAP

<sup>1</sup>H NMR (D<sub>2</sub>O, ppm): δ 4.30 (SSCH<sub>2</sub>CH<sub>2</sub>), 3.65 (CH<sub>2</sub>CH<sub>2</sub>O); 3.4-4.0 (NCH<sub>2</sub>CH<sub>2</sub>N), 3.31 (OCONHCH<sub>2</sub>), 3.21 (OCONHCH<sub>2</sub>CH<sub>2</sub>), 2.95 (SSCH<sub>2</sub>CH<sub>2</sub>), 1.95 (CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>).



Figure S1. <sup>1</sup>H NMR spectra analysis of PEG-SSPCA copolymers. a) PEG-SSMDE; b) PEG-SSPDA; c) PEG-SSBAP.



Figure S2. FT-IR spectrum of PEG-SSBAP copolymers showing characteristic peak of carbamate linkage.



## 3. GPC of PEG-SSPCA copolymers

Figure S3. GPC curve of PEG-SSPCA copolymers. a) PEG-SSMDE; b) PEG-SSPDA; c) PEG-SSBAP.



**Figure S4**. a) Acid-base titration curve of PEG-PCA copolymers; b) Acid-base titration of PEG-SSBAP copolymer gives pH value as the function of apparent protonation degree of tertiary amines in PEG-SSBAP copolymer.



**Figure S5**. The ratio of fluorescence intensity at 372 and 383 nm (from pyrene excitation spectra) as a function of the concentrations of PEG-SSBAP.



**Figure S6.** CLSM observation of intracellular distribution of Dox 1 h after incubating free Dox (up) or Dox-loaded PEG-SSBAP micelles (down) with SKOV-3 cells.



**Figure S7.** CLSM observation of intracellular location of Dox 4 h after incubating Dox-loaded PEG-SSBAP micelles with MCF-7 cells. This figure indicates Dox-loaded micelles (in red) locate in the lysosomes (in green) stained by LysoTracker green DND26 (Lyso). The cellular nucleus in blue is stained by DAPI. The arrow shows the co-localization of Dox-loaded micelles and lysosome.



**Figure S8**. Cytotoxicity of BAP and cysteamine, as degradation products from PEG-SSBAP, at varied concentration from 5 to 400  $\mu$ g·mL<sup>-1</sup> against three types of cell lines: a) MCF-7, b) HepG2 and c) SKOV-3 cells. PBS group was used as a blank control and set as 100% cell viability.



**Figure S9**. TUNEL (a) and Ki67 (b) staining of tumor section of the mice 28 day after chemotherapy using Dox-loaded PEG-SSBAP micelles. PBS group was used as a positive control.



**Figure S10**. H&E staining of other organ section of the mice 28 day after chemotherapy using Dox-loaded PEG-SSBAP micelles. PBS group was used as a control.