Supporting Information for:

Controllable one step copper coating on carbon nanofibers

for flexible cholesterol biosensor substrate

Bharat Bajaj^{a,e}, Han I. Joh^a, Seong M. Jo^{a,b}, GurpreetKaur^c, Anjali Sharma³, Monika Tomar^d, Vinay Gupta^{c,*}, and Sungho Lee^{a,b*}

^aCarbon Convergence Materials Research Center, Institute of Advanced Composite

Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdoung-eup, Wanju-gun, Jeollabuk-do 565-905, Korea

^bDepartment of Nano Material Engineering, Korea University of Science and Technology,

217 Gajeong-ro, Yuseong-gu, Daejeon 305-350 Korea

^cDepartment of Physics and Astrophysics, University of Delhi, New Delhi-110007, India

^dDepartment of Physics, Miranda House, University of Delhi, New Delhi-110007, India

^eSchool of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea

Corresponding Author

*E-mail: <u>sunghol@kist.re.kr</u> (Sungho Lee), <u>vgupta@physics.du.ac.in</u> (Vinay Gupta)

Result and discussion

The EDAX data for the CuO coated CNF revealed the presence of copper compound on nanofiber surface as shown in Figures S2 (a-f). The peak intensities of CuO to CNF were increasing when temperature increases from 100 to 140° C. The atomic % of carbon, oxygen, nitrogen and copper element as shown in Table S1 indicates that the CNF surface coverage ratio of CuO nanoparticles was higher with increase in temperature near to the boiling point of solvent. These results were in agreement with XRD and SEM results.

Figure S1. SEM images of CuO decorated CNF: (a) 80 (b) 100°C, and (c) 140°C.

Figure S2. EDAX analysis of CuO decorated CNF: (a) CNF, (b) 80°C, (c) 100°C, (d) 120°C, (e) 140°C and (f) 160°C and inset high resolution SEM images of CuO-CNF.

Sample	Carbon	Oxygen	Nitrogen	Copper	Conductivity	
	Atomic%	Atomic %	Atomic%	Atomic%	Sm ⁻¹	
CNF	62.71	7.76	29.53	NA	474	
CNF-CuO 80	66.88	6.89	24.77	1.46	203	
CNF-CuO100	50.07	18.93	18.63	12.37	224	
CNF-CuO120	43.70	22.14	18.29	15.77	251	
CNF-CuO140	27.13	35.20	8.32	29.36	308	
CNF-CuO160	51.73	11.16	33.20	3.91	210	

Table S1. Elemental analysis and conductivity at different temperature

Figure S3. Hanes Plot.

Table S2. Demonstration of flexible sensor- Variation of sensor response with bending

 condition

Bending Condition	Image	Peak oxidation current of ChOx/CuO/CNF bioelectrdoe upon addition of cholesterol (2.56 mM)		
No bending		0.83 mA		
Moderate bending		0.80 mA		
Complete bending	and the second s	0.76 mA		
Bending reverted back		0.83 mA		

Figure S4. Selectivity test.

Tabla	C2	D ool	aarum	compla	analyzaia
I able	33.	Real	serum	sample	allalysis

	Free cholesterol Concentration			Spike			
	(mM)		R.S.D. of	(mM)	Data after Spike		
Sample			developed				R.S.D. of
Number	Number Biosensor	spectrophotometric	biosensor		Cholesterol	Recovery	developed
			(n=3)		concentration	(%)	biosensor
							(n=)
1	1.09	1.16	2.3 %	2.56	3.60	98	2.1 %
2	1.46	1.39	1.9 %	2.56	4.06	101	1.8 %