Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary information (ESI)

Single step synthesis of carbon dots embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery

Angshuman Ray Chowdhuri¹, Satyajit Tripathy², Chanchal Haldar¹, Somenath Roy², Sumanta kumar Sahu^{*1}

1 Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, Jharkhand, India

2 Immunology and Microbiology Laboratory, Department of Human Physiology with

Community Health, Vidyasagar University, Midnapore-721102, India

* Corresponding author. E-mail: <u>sahu.s.ac@ismdhanbad.ac.in</u>, <u>sumantchem@gmail.com</u>; Fax:

+91 326-2307772; Tel: +91 3262235936

Fig. S1. TEM images of carbon dot conjugated OCMC-MMA nanoparticle synthesized at 135 $^{\circ}$ C (a) and 150 $^{\circ}$ C (b).

Fig. S2: DLS spectrum of OCMC-MMA nanoparticles

Fig. S3. Size distribution of OCMC@MMA NPs@CDs aggregates as determimed by DLS

Table S1: Intermolecular interaction and second order perturbation energy (E (2), Kcal/mol) between donor and acceptor orbitals of Drug and copolymer molecules.

Where LP =lone pair, BD*= Anti bonding orbital.

Sl	Inter molecular	Distance	Donor	Acceptor	E(2),
No.	interaction	(Å)			Kcal/mol
1	101H-N	2.17862	LP (1) 10	BD*(1)N-1H	3.61
			LP (2) 10	BD*(1)N-1H	2.12
2	202Н-С	2.22249	LP (1) 2O	BD*(1)C-2H	3.22
			LP (2) 2O	BD*(1)C-2H	0.46
3	203Н-С	2.59327	LP (2) 2O	BD*(1)C-3H	0.68
4	1N4H-C	2.68756	LP (1) 1N	BD*(1)C- 4H	1.25
5	1N5H-C	2.90453	LP (1) 1N	BD*(1)C- 5H	0.31

Fig. S4: Graphical presentation represents the cell viability of normal lymphocytes (a) and Cancer cell (b) after exposure with OCMC-MMA@CDs up to $500 \mu g/ml$.

Fig. S5: In vitro *telmisartan* releases from OCMC-MMA@CDs at 7.4 pH solution.

Fig. S6. 1H NMR spectra of OCMC dissolved in D_2O (a), OCMC@MMA NPs dissolved in D_2O (b), and CMC@MMA NPs dissolved in CF3COOD (c).

1HNMR Study

The 1H NMR spectrum of OCMC chitosan dissolved in D₂O is shown in Figure S6 (a). The multiplet proton signals in between 3.0-4.0 ppm confirmed the presence of ring methenyl protons of O-carboxylated chitosan backbones [7-9]. The peaks at 4.71 and 3.73 ppm corresponded to the -CH- group in the sugar ring while 3.92 ppm referred to the -CH₂- group of the carboxymethyl segment [10]. Which indicated the linkage of carboxymethyl groups to the hydroxyl position of chitosan. MMA is grafted at the NH₂ group of the OCMC backbone. Proton signals at 2.01 ppm is due to the methyl hydrogen of N-acetylglucosamine. The 1H NMR spectrum of OCMC-MMA NPs dispersed in D₂O was given in Figure S6 (b). The proton signals only due to the OCMC is prominent. When the OCMC-MMA NPs is dispersed in CF₃COOD, all the characteristic peaks including CH_3 (0.9-1.0 ppm), methylene-methine envelope (1-2.5 ppm) was observed for PMMA and 3.0-4.0 ppm were detected for the OCMC, as shown in fig S6 (c) [10]. The hydrophobic compartment i.e., PMMA is limited when OCMC-MMA is dissolve in D₂O, thus causing shielding of the proton signal in OCMC-MMA. As OCMC-MMA was dissolved, the dissociation of OCMC-MMA led to orientation of the hydrophobic chains to the aqueous phase, and the alkyl groups appeared accordingly. Therefore, the hydrophilic carboxylated chitosan and the hydrophobic acrylate polymer portions spontaneously formed nanoparticles with core-shell structures in aqueous solution

T 11 C	a .	0.1		oo: ·	• • •	
Table S2	('omnarison	of drug	loading	efficiency	with 1	relevant literature
1 abic 52.	Comparison	of utug	loaung	criticiteticy	vv ItII I	folovant interature.

	Carrier	Drug	%Loading Efficiency	%Encapsulation Efficiency	Reference
Shi et al	Glycyrrhizin- modified O- carboxymethyl chitosan nanoparticles	Paclitaxel	14.9 %	83.7 %	1
Maya et al	Cetuximab conjugated O- carboxymethyl chitosan nanoparticles	Paclitaxel		75.0 %	2
Tran et al.	self-assembled gelatin–oleic acid nanoparticles	Telmisartan	9.05 %	90.5 %	3
Emami et al.	succinate- chitosan- polyethylene glycol-folic acid	Paclitaxel	28.2 %	82.5 %	4
Koo et al.	oligomer- conjugated glycol chitosan nanoparticles	Paclitaxel	24.2 %	78.4 %	5
Wang et al.	Amphiphilic carboxymethyl chitosan- quercetin	Paclitaxel	25.37 %	64.24 %	6
In this Work	OCMC@MMA NPs/CDs	Telmisartan	28.2 %	82.9 %	

Reference:

1. L. Shi, C. Tang and C. Yin, Biomaterials, 2012, 33, 7594-7604.

2. S. Maya, L. G. Kumar, B. Sarmento, N. Sanoj Rejinold, D. Menon, S. V. Nair and R. Jayakumar, *Carbohydrate Polymers*, 2013, 93, 661–669.

3. P. Ha-Lien Tran, T. Truong-Dinh Tran and B. J. Lee, *International Journal of Pharmaceutics*, 2013, 455, 235–240.

4. J. Emami, M. Rezazadeh, F. Hasanzadeh, H. Sadeghi, A. Mostafavi, M. Minaiyan, M. Rostami, N. Davies, *International Journal of Biological Macromolecules*, 2015, 80, 29–40.

5. H. Koo, K. H. Min, S. Cheon Lee, J. Hyung Park, K. Park, S. Young Jeong, K. Choi, I. Chan Kwon and K. Kim, *Journal of Controlled Release*, 2013, 172, 823–831.

6. X.Wang, Y. Chen, F. Z. Dahmani, L. Yin, J. Zhou and J. Yao, *Biomaterials*, 2014, 35, 7654-7665.

7. F. Cui, F. Qian, Z. Zhao, L. Yin, C. Tang, and C. Yin, *Biomacromolecules* 2009, 10, 1253-1258.

8. Z. Ye, J. Guo, D. Wu, M. Tan, X. Xiong and Y. Yin and G. He, *Carbohydrate Polymers*, 2015, 132, 520–528.

9. J. Lv, Q. Zhou, G. Liu, D. Gao and C. Wang, Carbohydrate Polymers, 2014, 113, 344-352.

10. L. Shi, C. Tang and C. Yin, Biomaterials, 2012, 33, 7594-7604.