Supporting Information

Theranostic CuS Nanoparticles Targeting Folate Receptors for PET Image-Guided Photothermal Therapy

Min Zhou^{a,b,#}, Shaoli Song^{a, c,#}, Jun Zhao^a, Mei Tian^b, Chun Li^{a,*}

^aDepartment of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center,

Houston, Texas 77054, United State.

^bThe Second Hospital of Zhejiang University, Hangzhou, Zhejiang, China

^cDepartment of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, P. R. China

*Corresponding Author:

Chun Li, Department of Cancer Systems Imaging, Unit 1907, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030; Phone: (713) 792-5182; Fax: (713) 794-5456; E-mail: cli@mdanderson.org.

[#]These authors contributed equally to this work

Table of Contents

- Figure S1: Zetal potential analysis of FA-CuS NPs.
- **Figure S2.** ¹H NMR analysis of FA-CuS NPs
- **Figure S3.** Temperature change curve of FA-CuS NPs under NIR laser irradiation at 1.5 W/cm².
- Figure S4. Dynamic light scatting (DLS) of FA-CuS NPs in PBS or FBS solution
- Figure S5. Radiolabeling efficiency of FA-[⁶⁴Cu]CuS NPs
- **Figure S6.** Comparison of the UV-vis spectra of FA-CuS NPs and FA-[⁶⁴Cu]CuS NPs
- Figure S7. Dynamical light scatting (DLS) of FA-[⁶⁴Cu]CuS NPs
- Figure S8. Stability of FA-[⁶⁴Cu]CuS NPs
- **Figure S9.** Biodistribution of FA-[⁶⁴Cu]CuS NPs in orthotopic HeyA8 ovarian tumor model

Figure S1: Zetal potential analysis of FA-CuS NPs.

Figure S2. ¹**H NMR analysis of FA-CuS NPs.** The typical peaks of FA at 8.98, 7.59, 6.76, 4.20, and 2.22 ppm representative of FA molecules were observed in the spectrum acquired with purified FA-CuS NPs, indicating FA molecules were successfully coated to the surface of CuS NPs.

Figure S3. Temperature change curve of FA-CuS NPs (100 μ g/mL) under NIR laser irradiation (808 nm, 1.5 W/cm²).

Figure S4.Dynamic light scatting (DLS) of FA-CuS NPs in PBS or PBS containing 10%FBS at 37°C for up to 7 days.

Figure S5. Radiolabeling efficiency of FA-[64Cu]CuS NPs. Greater than 99% of the radioactivity was associated with FA-[64Cu]CuS NPs at the end of synthesis.

Figure S6. Comparison of the UV-vis spectra of FA-CuS NPs and FA-[⁶⁴Cu]CuS NPs. FA-[⁶⁴Cu]CuS NPs correlated well with the spectroscopic features observed for the non-radioactive FA-CuS NPs, indicating similarity between the two NPs at the tracer and macroscopic levels.

Figure S7. Dynamical light scatting (DLS) of FA-[64Cu]CuS NPs. The hydrodynamic diameter of the FA-[64Cu]CuS NPs is 21.2 nm. There is no significant difference with the non-radioactive FA-CuS NPs (21.0 nm).

Figure S9. Biodistribution of FA-[⁶⁴Cu]CuS NPs in orthotopic HeyA8 ovarian tumor model. Female nude mice were inoculated with HeyA8 cells intraperitoneally (1x 10⁶ cells/mouse). At 20 days after tumor inoculation, mice were injected with FA-[⁶⁴Cu]CuS NPs intravenously (200 μ Ci/mouse). Mice were killed at 24 h after NP injection, and various tissues were removed for radioactivity counting. The data are presented as mean ± standard deviation (n = 6).