Supporting Information for

A fluorescent light-up probe based on AIE and ESIPT process for β -galactosidase activity detection and visualization in living cells

Lu Peng,[‡]^{ab} Meng Gao,[‡]^c Xiaolei Cai,^b Ruoyu Zhang,^b Kai Li,^c Guangxue Feng,^b Aijun Tong^{*a} and Bin Liu^{*bc}

^a Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, PR China.

E-mail: tongaj@mail.tsinghua.edu.cn

^b Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.

E-mail: cheliub@nus.edu.sg

^c Institute of Materials Research and Engineering (A*STAR), 3 Research Link, Singapore 117602 ‡ These authors contributed equally to this work

Table of content

Table S1 (Fig. S1~S6)	 Page S2
Additional Fig.s (Fig. S1~S7)	 Pages S2~S5
Detailed synthesis of compound SA-βGal	 Pages S6~S9

Table S1. Fluorescence spectroscopic data (maximum exication, emission and the quantum yield) of **SA-\betaGal** (100 μ M) before and after addition of β -galactosidase (4.0 U/mL) in phosphate buffer solutionat pH 7.4 (10 mM, 37 °C).

Sample	Fluorescence maximum		Apparent
	$\lambda_{\rm ex}$ [nm]	λ _{em} [nm]	(Φ)
SA-βGal	387	545	<0.001
SA-βGal +βGal	387	545	0.246

Fig. S1. Absorption spectra of SA (100 μ M) in DMSO and co-solvent mixtures containing 90% phosphate buffer solution (10 mM, pH 7.4).

Fig. S2. Dynamic lighter scattering (DLS) analysis of SA-βGal (100 μM) in PBS buffer solution (10

mM, pH 7.4) containing 1% DMSO.

Fig.S3. (a) Time-dependent fluorescence spectra of **SA-\betaGal** (100 μ M) upon addition of β -galactosidase (2.0 U/mL). Excitation at 387 nm.

Fig. S4.(a) Fluorescence spectra of **SA-βGal** (100 μ M) in the presence of different concentrations of β-galactosidase (0-0.1 U/mL) in phosphate buffer solution at pH 7.4 (10 mM, 37 °C). (b) Calibration curve of the fluorescence intensities (*I*₅₄₅) versus β-galactosidase concentrations.

Fig. S5. Absorption spectra of SA- β Gal (100 μ M) before and after addition of β -galactosidase (4.0 U/mL) in phosphate buffer solution at pH 7.4 (10 mM, 37 °C).

Fig.S6 (a) ESI mass spectrum of **SA-\betaGal** (1 mM) and (b) the isolated fluorescent product after **SA-\betaGal** (1 mM) was reacted with β -galactosidase (4.0 U/mL) for 30 min in PBS buffer solution (10

mM, pH 7.4, 37 °C), suggesting the formation of SA from SA-βGal.

Fig. S7. Fluorescence spectra of **SA** (100 μ M), **SA-\betaGal** (100 μ M) before and after addition of β -galactosidase (4.0 U/mL) in phosphate buffer solutionat pH 7.4 (10 mM, 37 °C).

Synthesis of compound **3**

In 20 mL of dichloromethane, 0.98 g of compound 1 (2.4 mmol), 244 mg of 2-hydroxybenzaldehyde (2.0 mmol), and 0.65 g of tetrabutylammonium bromide (2.0 mmol) were dissolved. Then 10.0 mL of sodium hydroxide solution (5%) was added, and the mixed solution was refluxed overnight. After the reaction was completed, the mixture was extracted three times using 30 mL of CHCl₃, washed with brine solution, and dried over anhydrous Na₂SO₄. Column chromatography was used to purify the coarse product to yield **3** as white powders (633 mg, 70%).

Synthesis of compound 4

In 10 mL of ethanol, 452 mg of Compound **3** (1 mmol) and 25 mg of hydrazine hydrate (0.5 mmol) were dissolved. After refluxing for 4 hours, the reaction was completed. The resulting precipitates were filtrated and washed three times with 30 mL of ethanol to yield 4 as white powders (399 mg, 90% yield).

¹H NMR (100 MHz, CDCl₃): δ =8.92(s, 2H), 8.15 (d, 2H, J = 7.6 Hz,),7.43–7.39 (m, 2H), 7.17 (d, 4H, J = 8.0 Hz),5.59–5.45 (m, 4H),5.13–5.03 (m, 4H),4.26–4.04 (m, 6H),2.21(s, 6H),2.05(s, 6H),2.01(s, 6H); ¹³C NMR (100 MHz, CDCl₃): 170.3, 170.2, 170.1, 169.4, 157.0, 156.5, 132.3, 127.5, 124.8, 124.0, 117.1, 100.5, 71.2, 70.8, 68.7, 66.9, 61.3, 20.7, 20.6, 20.5.

Fig. S8. ¹H NMR spectrum of compound 4.

Fig. S9. ¹³C NMR spectrum of compound 4.

Synthesis of SA-βGal

In 5 mL of methanol, compound 4 (225mg, 0.25 mmol) and KOH (112 mg, 2 mmol) were added. After being stirred at r.t. for 2 hours, the mixed solution was neutralized by acetic acid. The product of **SA-\betaGal** was precipitated as white solid. The product was filtrated under vacuum, washed by cold methanol and dried under vacuum to afford pure product of **SA-\betaGal** (134 mg, 95% yield).

¹H NMR (400 MHz, d_6 -DMSO): δ =9.07(s, 2H),8.03 (d, 2H, J = 6.4 Hz),7.48 (t, 2H, J = 6.8 Hz),7.26 (d,2H,J = 8.4 Hz), 7.11 (t, 2H, J = 7.2 Hz),4.91 (d, 2H, J = 7.6 Hz),4.64 (s, 8H), 3.73–3.42 (m, 12H); ¹³C NMR (100 MHz, d_6 -DMSO): 157.1, 156.7, 132.6, 126.4, 122.8, 122.0, 116.0, 101.5, 75.7, 73.2, 70.4, 68.0, 60.3. ESI-MS of C₂₆H₃₂N₂O₁₂ [M-H]⁺ m/z 563.2(calc. 563.19)

Fig. S11. ¹³C NMR spectrum of SA-βGal.

Compound SA (salicylaldehyde azine) was prepared through our early reported procedure.^{1,2}

References

- 1. M. Gao, Q. Hu, G. Feng, B. Z. Tang and B. Liu, *Journal of Materials Chemistry B*, 2014, **2**, 3438-3442.
- 2. W. Tang, Y. Xiang and A. Tong, *The Journal of organic chemistry*, 2009, 74, 2163-2166.