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Materials

Sodium 6-(p-toluidino)-2-naphthalenesulfonate ([Na][TNS]), trihexyl(tetradecyl)phosphonium
chloride ([Pses14][Cl]), tetrabutylphosphonium bromide ([P4444][Br]), tetraphenylphosphonium
chloride ([TPP]CIY), (4-nitrophenyltriphenylphosphonium bromide ([4NB][Br]),
Benzyltriphenylphosphonium chloride ([BTP][CI]), anhydrous ethanol (200 proof), anhydrous
methylene chloride (DCM), and all proteins were purchased from Sigma-Aldrich, and used as
received. Triply deionized water (18.2 MQ cm) from an Elga model PURELAB ultra water-filtration
system was used for preparation of the sodium phosphate buffer (pH 7.4/10 mM).

Synthesis and Characterization of Functional GUMBOS

Briefly, a phosphonium salt (PR,)[X]; R- hydrocarbon substituent, X- halide) was dissolved in DCM
and added onto solid [Na][TNS] at a molar ratio of 1:1.1. Afterwards, a few drops of triply deionized
water were added to the reaction mixture in order to collect the resulting byproduct (NaX), and
then stirred for 24 h. Afterwards, the DCM layer was separated from the water layer and filtered
in order to remove excess [Na][TNS]. Next, the filtrate was washed repeatedly with water in order
to remove NaX byproduct. The product was recrystallized using a DCM/water solvent mixture.
The final product [PR4][TNS] was dried by removal of solvents in vacuo. Finally, the resultant
GUMBOS were characterized by use of electron spray ionization mass spectroscopy (ESI-MS)
(Fig. S1 in the supporting information (SI)), and single-crystal X-ray crystallography. The ionic
compounds [TPP][TNS], [P4444][TNS], and [BTP][TNS] were found to be crystalline. Crystal data
and details of the structural refinement for [TPP][TNS], [P4444][TNS], and [BTP][TNS] are provided

in the Table S1 in the SI.

Single-Crystal X-ray Crystallographic Studies

Diffraction data were collected at low temperature on a Bruker Kappa Apex-Il DUO diffractometer

with Cu Ko (A = 1.54184 A) or MoKa radiation (L = 0.71073 A). Refinement was by full-matrix



least squares using SHELXL'?, with H atoms in idealized positions except for those on N, for
which coordinates were refined. [BTP][TNS] was the DCM solvate, and disordered water solvent
in [TPP][TNS] was removed wusing SQUEEZE.'? Crystal data: [P444][TNS],
[C16H36P][C17H14sNO5S], monoclinic P2i/c, a=10.3977(4), b=18.2132(7), ¢=17.4211(6) A,
B=102.071(3)°, Z=4, T=90K, 0,2=59.0° (Cu), R=0.070 for 2612 data with 1>25(I) (of 4636 unique),
359 parameters, CCDC 1058986; [BTP][TNS], [CysH2P][C17H14NO3S]. CH,Cl,, triclinic P1,
a=10.0089(4), b=10.4658(4), c=10.8995(4) A, a=61.537(2), B=78.686(2), y=66.103(2)°, Z=1,
T=90K, 0,,2,=35.0° (Mo), R=0.041 for 11156 data with I>2c(l) (of 12497 unique), 465 parameters,
CCDC 1058985; [TPP][TNS], [C24H20P][C17H14NO3S]. 0.7H,0O, monoclinic P24/c, a=14.3436(10),
b=13.8575(9), c=18.0804(12) A, p=112.786(2)°, Z=4, T=90K, 0,,,=68.8° (Cu), R=0.049 for 5188

data with 1>2c(1) (of 5810 unique), 428 parameters, CCDC 1058984.

Absorption and Fluorescence Studies

A Shimadzu UV-3101PC spectrophotometer was used to acquire absorbance spectra. A Spex
Fluorolog-3 spectrofluorimeter (model FL3- 22TAU3; Jobin Yvon, Edison, NJ) was used to
perform fluorescence studies. A 1.0 cm path length quartz cuvette (Starna Cells) was used in both
absorbance and fluorescence data acquisition. Absorption spectra were collected against an
identical cell filled with pH 7.4 phosphate buffer as the blank. Fluorescence studies were
performed by adapting a synchronous scan protocol with right angle geometry. A 5.0 mL buffer
solution mixed with 50 pL of 0.5 mM ethanolic, TNS-based sensor solution was used as blank in

fluorescence studies.

Absolute Quantum Yield Measurements
Absolute quantum yield measurements for all TNS-based GUMBOS were measured using an

integrated sphere. A 1.0 cm path length quartz cuvette (Starna Cells) was used for data



acquisition. The TNS-based GUMBOS were prepared at concentrations equivalent to 10 uM in

ethanol to obtain quantum yield ( 1) in ethanol. In order to obtain #fin water, 100 L of 0.5 mM
ethanolic TNS-based sensor solution was rapidly introduced into a 5 mL pH 7.4 buffer solution

and ultra-sonicated for 5 min prior to measurements.
Octanol-Water Partition Coefficient (Ko/w)

The Kow values were determined by use of absorbance measurements obtained from a
Shimadzu UV-3101PC spectrophotometer. All absorbance measurements were performed using
a 1.0 cm path length quartz cuvette (Starna Cells). Briefly, an equal amount of octanol and water
were mixed and left standing overnight until the solubility of the water in octanol is equilibrated.
The two phases were then separated into two different containers. Each compound was dissolved
in 10 mL of the water saturated octanol to prepare a 1.0 mM stock solution. The 1.0 mM stock
solution was then used to prepare 4 dilutions that were used to form a calibration curve based on
the absorbance readings and a best-fit line was plotted. One concentration from the calibration
curve was then chosen and mixed with an equal volume of the water mentioned in the separation
step above. This solution was then allowed to stir for 24 hours. Following the 24 hours, the octanol
layer was then extracted and the absorbance was measured. The equation for the line of best-fit
from the calibration curves was then used to determine the concentration of compounds within
the octanol and water layers for all compounds. The equation
Kopwy = loctanol layer] /lwater layer] \yaq then used to calculate the octanol water partition
coefficient.

Development of Predictive Models

In this study, predictive models were developed in order to accurately identify analytes used in
each experiment. Fluorescence sensor-response patterns generated by use of the four TNS-
based sensors (four TNS-GUMBOS x number of analytes x five replicates) were employed to

develop statistical models in each experiment. First, the dimensionality of the predictor space was



reduced using PCA. In most experiments, the first two principal components in PCA accounted
for more than 99% variance (except when the input data were normalized). Therefore, only the
values of these two components were used to develop predictive models using LDA. Second, the

predictive accuracy of each statistical model was assessed separately using cross-validation.
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Figure S1-1A Electrospray ionization mass spectrum in negative ion mode for TNS
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Figure S1-2B Electrospray ionization mass spectrum in negative ion mode for
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Figure S1-3A Electrospray ionization mass spectrum in positive ion mode for
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Figure S1-5A Electrospray ionization mass spectrum in positive ion mode for

[BTP][TNS]

x10 1 |-ES| Scan (0.183-0.257 min, 5 scans) Frag=150.0v 21292_neg_0.1ul.d Subtract
3120709

9_

B_

7

E_

5_

4]

34

2 313.0731

1l

314.0655
- 311.0611 o 316.0723 318.0510 320.0453
30 311 32 313 34 35 316 T 3B 9 3P0 3N
Counts (%) vs. Mass-to-Charge (m/z)

Figure S1-5B Electrospray ionization mass spectrum in negative ion mode for
[BTP][TNS]



x102 |+ES| Scan (0.311-0.446 min, 9 scans) Frag=150.0V 21253_150v_0.1ul.d Subtract
339.1313

0.9
0.8
0.7
0.6
0.5
04
0.3
3401342
0.2

0.1

3370702 3383492 Tl 1398 144 0944
T T T

33 337 338 39 W0 341 32 WI W4 345 M6
Counts (%) vs. Mass-to-Charge (miz)

Figure S1-6A Electrospray ionization mass spectrum in positive ion mode for

[TPP][TNS]

x10 2 |-ESl Scan (0.135-0.16% min, 3 scans) Frag=150.0% 21253 neg_0.1ul.d Subtract
312.0701

0.9

0.8

0.6
0.5
0.4
0.3

e 3130733

0.1
3140695
311.0552 ] 316.0621 318.8744 320.8844

30 31 32 33 34 5 36 37 38 319 0 I
Counts (%) vs. Mass-to-Charge (miz)

Figure S1-6B Electrospray ionization mass spectrum in negative ion mode for

[TPP]TNS]

10



0.4 1.2
[P66614][TNS]

Z
— [TPP][TNS] o
8 0.3 - = [BTP][TNS] - 0.9 §
.§ [4NB][TNS] N
g [P4444][TNS] =
o
< 0.2 - - 0.6 g
(7]
o
(1)
-
o

0.1 1 - 0.3

0.0 T T m 0-0

250 300 350 400 450 500 550
Wavelength (nm)

Figure S2.  Absorption and fluorescence emission spectra (A~ 355 nm) of 10 uM TNS

GUMBOS in ethanol. Emission spectrum has been normalized to 1.0 at its maximum.
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Table S1. Crystal Data and Structure Refinement for [TPP][TNS], [BTP][TNS] and [P4444][TNS]

[TPP][TNS] [BTP][TNS] [P44as] [TNS]
Empirical formula C24H20P.C17H14N03S.0.7(H20) C25H22P.C17H14NO3S.CH2CI2 C16H36P.C17H14N03S
M, 664.33 750.67 571.77
Crystal system Monoclinic Triclinic Monoclinic
Space group P2./c P1 P2./c
a(h) 14.3436 (10) A 10.0089 (4) A 10.3977 (4) A
b (A) 13.8575 (9) A 10.4658 (4) A 18.2132 (7) A
c(d) 18.0804 (12) A 10.8995 (4) A 17.4211 (6) A
a(deg) 61.537 (2)°
£ (deg) 112.786 (2)° 78.686 (2)° 102.071(2) °
y (deg) 66.103 (2)°
V(A3) 3313.3 (4) A3 917.68 (6) A3 3226.2 (2) A3
T(K) 90 K 90 K 90 K
Z 4 1 4
Table S2. Molecular weight (MW), yield (%), melting point (°C), and log KO/W, of TNS-based
GUMBOS
GUMBOS MW Yields (%) Melting point (°C) log Komw
[Pees14] [TNS] 796.22 98 78 1.41
[4NB][TNS] 710.77 99 152 1.09
[P44aa] [TNS] 571.79 98 162 1.04
[BTP][TNS] 665.78 98 182 1.15
[TPP][TNS] 651.75 99 223 0.78
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Table S3. Selected Bond Distances (A) and Angles (deg) for [TPP][TNS], [BTP][TNS] and
[P4444][TNS]

[TPP][TNS] [BTP][TNS] [P44aa] [TNS]
Bond Distances
S1—C1 1.778 (2) 1.7741 (16) 1.767 (5)
N1—C6 1.397 (3) 1.395 (2) 1.377 (6)
N1—C11 1.406 (3) 1.420 (2) 1.395 (7)
N1—H1N 0.84 (3) 0.89 (3) 0.868 (19)
C1—C10 1.361 (4) 1.373 (2) 1.369 (6)
c1—C2 1.412 (3) 1.421 (2) 1.403 (7)
c2—C3 1.370 (3) 1.376 (2) 1.364 (7)
C3—C4 1.415 (3) 1.423 (2) 1.434 (6)
C4—C5 1.419 (3) 1.419 (2) 1.412 (7)
C4—C9 1.425 (4) 1.427 (2) 1.412 (7)
C5—C6 1.380 (3) 1.382 (2) 1.377 (6)
Cc6—C7 1.422 (4) 1.432 (2) 1.417 (6)
C7—C8 1.358 (4) 1.367 (2) 1.357 (7)
C8—C9 1.421 (4) 1.425 (2) 1.409 (6)
C9—C10 1.409 (4) 1.413 (2) 1.410 (6)
Cl11—C12 1.397 (3) 1.392 (3) 1.384 (7)
C11—C16 1.395 (4) 1.399 (3) 1.403 (7)
C12—C13 1.391 (3) 1.398 (3) 1.386 (7)
C13—C14 1.395 (4) 1.388 (3) 1.381 (7)
C14—C15 1.390 (4) 1.396 (3) 1.392 (7)
C14—C17 1.504 (4) 1.511 (3) 1.511 (7)
C15—C16 1.392 (4) 1.395 (3) 1.367 (7)
Bond Angles

C6—N1—C11 125.6 (2) 123.35 (14) 128.6 (4)
C6—N1—H1N 113 (2) 115.7 (17) 112 (4)
C11—N1—H1N 112 (2) 110.1 (17) 119 (4)
C10—C1—C2 119.9 (2) 120.38 (14) 119.2 (5)
C10—C1—S1 118.79 (18) 119.69 (12) 122.1(4)
C2—C1—S1 121.28 (18) 119.93 (12) 118.7 (4)
C3—C4—C5 122.9(2) 122.09 (14) 121.6 (5)
C5—C6—N1 119.5 (2) 124.85 (15) 124.1 (5)
N1—C6—C7 121.3 (2) 116.30 (14) 116.9 (5)
C10—C9—C8 122.1(2) 122.10 (14) 122.9 (5)
C16—C11—N1 124.4 (2) 118.42 (16) 119.1 (5)
C12—C11—N1 117.5 (2) 122.47 (16) 123.5 (5)

0]
17 15 8 10 \\ /O_
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Table S4 Absorption maximum for 1 — 1* transition (Aabs), molar extinction coefficient at 355
nm (£355), emission maximum (%em), and quantum yield ( #f1) of TNS-based GUMBOS

£355/10*
GUMBOS  Solvent  %ass (nm) Aem (nm) % g
(M- cm-1)
[Pess14[TNS]  Ethanol 356 6.3 427 5
[4NB][TNS]  Ethanol 352 5.6 425 11
[Pasal[TNS]  Ethanol 352 6.1 425 17
[BTPI[TNS]  Ethanol 354 5.7 427 11
[TPP][TNS]  Ethanol 353 5.9 425 12
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Figure S3 Relative emission intensity (Aex — 355 nm) of TNS-based GUMBOS at 435 nm in presence of different concentrations
of HSA (H), a-antitrypsin (A) and B-lac (B). Error bars represent the standard deviations of five replicate samples
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PC 3

Figure S4. (A) PCA score plot using the first two principal components based on the sensor-
response patterns obtained from TNS-based sensors. HSA and a-antitrypsin were labeled as
given in the legend (B) PCA score plot using three principal components based on the normalized
sensor-response patterns obtained from TNS-based sensors. Different proteins concentrations
are given in the legend from top to bottom are 10 nM HSA, 20 nM HSA, 30 nM HSA, 50 nM HSA,
70 nM HSA, 100 nM HSA, 10 Antitrypsin, 20 Antitrypsin, 30 Antitrypsin, 50 Antitrypsin, 70
Antitrypsin, 100 Antitrypsin, 200 Antitrypsin, and 500 Antitrypsin. (C) PCA score plot using three
principal components based on the normalized sensor-response patterns obtained from TNS-
based sensors: Ellipsoids cover 95% of each cluster; HSA — blue ellipsoid, a-antitrypsin — red
ellipsoid
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Figure S5.  Plot of relative fluorescence emission intensity versus the concentration of HSA
(red), or a-antitrypsin (black) for (A) [4NB][TNS], (B) [P4444][TNS], (C) [BTP][TNS], and (D)
[TPP][TNS]. Error bars represent the standard deviations of five replicate measurements
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