Electronic Supplementary Information

A Turn-on Fluorescent Chemodosimeter Based on Detelluration for

Detecting Ferrous Iron (Fe²⁺) in Living Cells

Zongjin Qu,^{†, ‡} Peng Li,[†] Xuexiang Zhang,^{†, ‡} and Keli Han^{*,†}

[†]State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, P. R. China

[‡] Graduate School of Chinese Academy of Sciences, Beijing 100049, China

*E-mail: klhan@dicp.ac.cn

Fig. S1 Normalized UV/Vis spectrum of 30 µM Naph-Te in acetonitrile.

Fig. S2 Normalized phosphorescence spectrum of 30 μ M **Naph-Te** in deaired acetonitrile. The solution was deoxygenated by nitrogen bubbling for 20 minutes; insert, the lifetime profile at 618 nm, $\tau = 16.55 \mu$ s. Data were acquired with $\lambda_{ex} = 412$ nm.

Fig. S3 The relationship between the concentration of Fe^{2+} and the fluorescence intensity (F. I.) at 550 nm. Data were collected after incubating the solutions (5 μ M Naph-Te) with various amounts of Fe^{2+} for 60 min in acetonitrile/PBS (1/5), pH 7.0.

Fig. S4 The change of the UV/Vis spectrum with titration of Fe²⁺ to Naph-Te (5 μ M) in acetonitrile/PBS (1/5), pH 7.

Fig. S5 Mass spectrum of the reaction mixture.

Fig. S6 Comparison of the emission and excitation spectra between the reaction mixture and authentic **1** in acetonitrile/PBS (1/5) at pH 7.0, $\lambda_{ex/em} = 445$ nm/550 nm.

Fig. S7 The pH titration curve of the fluorescent molecule 1 (13 μ M) in phosphate buffer (50 mM) with 1% DMSO as a co-solvent, $\lambda_{ex} = 445$ nm. The pK_a of 1 is estimated to be 5.6 where I/I_{max} is 0.5.¹

Cytotoxicity assay. Under standard culture conditions (atmosphere of 5% CO₂ and 95% air at 37 °C) in RPMI1640 medium supplemented with 10% fetal calf serum, HL-7702 cells (200 μ L, at a concentration of 5×10⁴/mL) was seeded into each well of a 96-well plate and incubated for 24 hours. Then the HL-7702 cells were incubated with Naph-Te at different concentrations (5 μ M, 10 μ M, 15 μ M, 20 μ M) for 24 hours. Subsequently, the cells were washed once with 37 °C PBS and then 100 μ L of medium (serum-free) containing 0.05% MTT was added to each well. After an incubation time of 4 hours, the medium was removed and 150 μ L of DMSO was added to each well to solubilize the formazan formed. The plate was shaken gently for 10 min and the absorbance at 490 nm was measured using a Microplate Reader. The absorbance of treated cells was compared with the absorbance of the controls, where cells were exposed only to the vehicle and were considered as 100% viability value.

Fig. S8 The cytotoxicity of Naph-Te was assessed using the MTT assay.

Fig. S10 ¹³C NMR spectra of Naph-Te in CDCl₃.

Fig. S12 ¹H NMR spectrum of 4-hydroxy-N-butyl-1, 8-naphthalimide in d⁶-DMSO.

Fig. S13 ¹³C NMR spectrum of 4-hydroxy-N-butyl-1, 8-naphthalimide in d⁶-DMSO.

References

(1) D. Cui, X. Qian, F. Liu and R. Zhang, Org. Lett., 2004, 6, 2757.