Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Appendix A. Supplementary data

Regulating Stemness of Mesenchymal Stem Cells by Tuning

Micropattern Features

Xinlong Wang^{a, b}, Tomoko Nakamoto^a, Ida Dulińska-Molak^a, Naoki Kawazoe^a and Guoping Chen^{a, b*} ^aTissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. ^b Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan. Tel: +81 29 860 4496; fax: +81 29 860 4714 E-mail address: Guoping.Chen@nims.go.jp (G. Chen)

Designed diameter (µm)	Measured diameter (µm)	Measured thickness (nm)
20	19.88 ± 0.73	59.66 ± 0.48
40	40.44 ± 0.20	62.92 ± 0.81
60	60.26 ± 0.39	65.40 ± 0.67
80	80.04 ± 0.24	67.98 ± 0.82

Supplementary table S1. Designed and measured dimensions of the circular micropatterns with various spreading area. Data represents the mean \pm SD (n=3).

Supplementary Fig. S1. Height, section and 3D images of the circular micropatterns with a

diameter of 20, 40, 60 and 80 µm measured by AFM in MilliQ water with a contact mode.

Supplementary Fig. S2. Phase-contrast micrographs of the photomasks (a) and micropatterns (b) with various spreading areas. The designed diameters of the circular micropatterns were 20, 40, 60 and 80 μ m. The cells were restricted within the micropatterns and exhibited same morphology as the underlying micropatterns with high attachment efficiency (c).

Supplementary Fig. S3. Phase-contrast micrographs of the photomasks (a) and micropatterns (b) with various geometries. Round, triangle, square, pentagon and hexagon with the same area of 1134 μ m² were designed. Cells showed the same geometries as the micropatterns they attached (c).

Supplementary Fig. S4. Phase-contrast micrographs of the photomasks (a) and micropatterns (b) with the same area of 706 μ m² of different aspect ratios of 1, 1.5, 4 and 8. Cells adhered following the micropatterns (c).

Supplementary Fig. S5. Immunofluorescence staining of the positive markers on the purified MSCs after 6 h culture in culture dish. Nuclei (blue), surface markers (green) and F-actin (red) were stained. The purified MSCs were positive for CD44, CD73, CD105,CD106 and STRO-1.

Supplementary Fig. S6. Immunofluorescence staining of the negative markers on the purified MSCs after 6 h culture in culture dish. Staining with only second antibodies without primary antibodies were conducted as controls. Nuclei (blue), surface markers (green) and F-actin (red) were stained. The purified MSCs were negative for CD11b, CD19, CD34 and CD45 in accordance with the criteria.