Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Supplementary Figures

Figure S1. Using the CLSM imaging, a 3D scanning was performed, where DPCs were encapsulated with gelatin and alginate-rhodamine B. Sections presented a homogenous nano-coating around DPC through the whole scanning. (Red: alginate-rhodamine B; lue: DAPI). Scale bars: 10µm.

Supplementary Tables

Sample	Total amount (ng)	Amountin supernatant (ng)	Loaded amount (ng)	Encapsulation efficiency %		
N=3	100	47.8±8.6	52.2±8.6	52.2±8.6		

y=(0.23865+0.86261)/[1+(x/1.72709)^2.70024]-0.86261

R²= 0.99912

Table S1. Loading efficiency of FGF-2 to alginate. For drug loading, 100ng of FGF-2 was absorbed with 1ml 0.1% alginate and loaded into LBL coating of DPCs. After incubated for 15-20 min, the mixed solution was then centrifuged, and the supernatant that containing the unloaded protein was collected and tested by a microplate reader using FGF-2 ELISA kit. 1ml 0.1% alginate in PBS without FGF-2 was used as the control. The encapsulation efficiency was calculated by normalizing the loaded amount of protein to the total amount of added protein. The concentration of FGF-2 was calculated using the four parameter logistic nonlinear regression (4PL). The experiment was conducted in triplicates.

Group	Number of Sample .	Count of induced HFs			Inductive efficiency %		
		≤1	2-6	>6	≤1	2-6	>6
DPC	N=5	1	0	0	20	0	0
DPC+FGF-2	N=8	1	2	0	12.5	25	0
LBL-DPC	N=7	2	0	0	28.5	0	0
lbl(FGF-2)-DPC	N=8	1	2	2	12.5	25	25

Table S2. The density of hair follicles induced by implar	anted DPCs.
---	-------------

Table S2. The density of hair follicles induced by implanted DPCs. The inductive efficiency is defined as the percentage of positive hair-inductions to total experiments. The average count of hair follicles induced by LBL(FGF-2)-DPCs was greater than that of DPCs treated with FGF-2, demonstrating a higher inductive efficacy. LBL-DPCs and DPCs alone exhibited a relative low efficiency of hair follicle induction.

Supplementary Videos

Supplementary Video 1

A single DPC was observed by 3D scanning under bright field.

Supplementary Video 2

A merged confocal scanning demonstrated a single DPC encapsulated with nano-coating, where a ultrathin matrices consisted of gelatin-FITC (green) and alginate-Rhodamine B (red) were shown around the cell surface. Nucleus was stained with DAPI (blue).

Supplementary Video 3

A Merged 3D Projection of confocal image stacks exhibites a single DPC encapsulated with different fluorescence (green = gelatin-FITC; red = alginate-Rhodamine B; blue = DAPI).