Electric Supplementary Information for

Development of a FRET-based recombinant tension sensor to visualize cell-material interactions

Yusuke Kambe ^{a,*}, Katsura Kojima ^b, Naohide Tomita ^c, Yasushi Tamada ^d, Tetsuji Yamaoka ^{a,*}

^a Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai,

Suita, Osaka 565-8565, Japan

E-mail: ykambe@ncvc.go.jp; yamtet@ncvc.go.jp

^b Silk Materials Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan

^c Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan

^d Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan

Table S1. Primer sequences for the construction of the plasmids pTrc[mKO-GPGGA8-mUKG - RGDS2], pTrc[mKO-RGDS2], and pTrc[mUKG-RGDS2].

Primer name	Sequence (5'–3')
MCS-5	CGGATCCAAAGGGCCCTTTCATATGCCATGGAAAAAGCTTGGTAC
MCS-3	CAAGCTTTTTCCATGGCATATGTTTGGGGCCCTTTGGATCCGAGCT
mKO/mUKG-5	G <u>GGATCC</u> AGATCTATGGTGAGCGTG
mKO-3	G <u>GGGCCC</u> GGAGTGGGCCACGGCGTC
mUKG-5	GCATATGGTGAGCGTGATCAAGG
mUKG-RGDS2-3	G <u>AAGCTT</u> AACTATCACCACGGCTATCACCACG <i>C</i> TTGCTGGCCTGG
	CTG
GPGGA8-1-5	CGGAGGTGCAGGACCAGGAGGAGCAGGACCAGGTGGAGCAG
	GACCAGGTGGTGCTGGACCT
GPGGA8-1-3	ACCTGGTCCTGCTCCACCTGGTCCTGCTCCTCGTGCTGCA
	CCTCC <u>GGGCC</u>
GPGGA8-2-5	GGAGGAGCAGGACCTGGAGGAGCAGGTCCAGGAGGAGCAGG
	ACCAGGAGGTGCA <u>CA</u>
GPGGA8-2-3	$\underline{TATG} TGCACCTCCTGGTCCTGCTCCTCGGACCTGCTCCTCCA$
	GGTCCTGCTCCAGGTCCAGCACC
mKO-RGDS2-3	G <u>AAGCTT</u> AACTATCACCACGGCTATCACCACGGGAGTGGGCCAC
	GG

*Apa*I (GGGCCC), *Bam*HI (GGATCC), *Hin*dIII (AAGCTT), and *Nde*I (CATATG) are underlined; overhangs of *Apa*I, *Kpn*I (GGTACC), *Nde*I, and *Sac*I (GAGCTC) are underlined and gray; sequences matching the cDNA are italicized; sequences encoding (RGDS)₂ or (GPGGA)₈ are in bold.

Figure S1. FPLC trace of rFRET-TS (A) and SDS-PAGE analysis (B) of solutions obtained in the rFRET-TS purification process.

Figure S2. Excitation (Ex.) and emission (Em.) spectra of rFRET-TS, mUKG (donor), and mKO (acceptor), with CLSM settings for the fluorescent imaging of cells. The donor in rFRET-TS was excited selectively by a 440-nm laser. In addition, mUKG- and mKO-specific emissions were detected as donor and acceptor channels, respectively, by using appropriate dichroic mirrors and photomultiplier tubes with slits.

Figure S3. NIH3T3 fibroblasts seeded onto PEG-coated glass surfaces with (right) or without (left) the immobilization of rFRET-TS. Pictures were taken at 90 min post-seeding. Scale bar = $50 \mu m$. Fibroblasts did not adhere to the surface in the absence of rFRET-TS and showed a round shape. In contrast, cells adhered to the sensor-immobilized surface likely due to the cell-adhesion site in rFRET-TS ([RGDS]₂).

Movie S1. Movie of brightfield and FRET index images of fibroblasts on the rFRET-TS-immobilized glass surface. Donor and acceptor emissions were separated and detected simultaneously, with 440-nm excitation, at 5-min intervals. The donor and acceptor images were analyzed to obtain FRET index images by using FV10-ASW software (Olympus, Japan); the intensity of each pixel of the acceptor images was divided by that of the corresponding pixel of the donor images, with a chromatic modulation of 16. The bright and dark colors in the FRET index images indicate a low and high FRET index, respectively. Low FRET is induced by strong tension. The observations were finished within 24 h post cell-seeding.

Movie S2. Movie of brightfield and FRET index images of fibroblasts on the rFRET-TS-immobilized glass surface, with the actin depolymerizer cytochalasin D in the medium. Donor and acceptor emissions were separated and detected simultaneously, with 440-nm excitation, at 5-min intervals. Cytochalasin D was added to the medium at a final concentration of 4 μ M immediately after one time point (i.e., at sixth frame), while imaging was continued. The observations were finished within 24 h post cell-seeding.