Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting Information

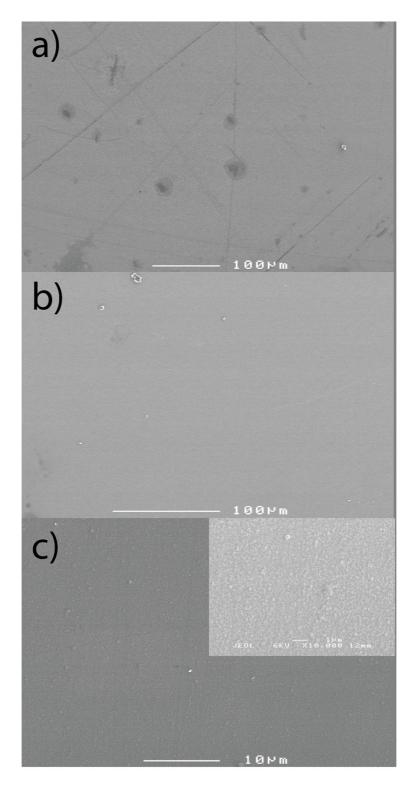


Figure 1: SEMs of the a) Cu, b) ZrO_2 and c) Cu- ZrO_2 (magnified image inset) films after light abrasion test using a metal spatula. The Cu film was readily scratched by whereas the ZrO_2 and the composite Cu- ZrO_2 were more resistant to damage. The low magnification SEM images also the films free of cracks and pinholes.

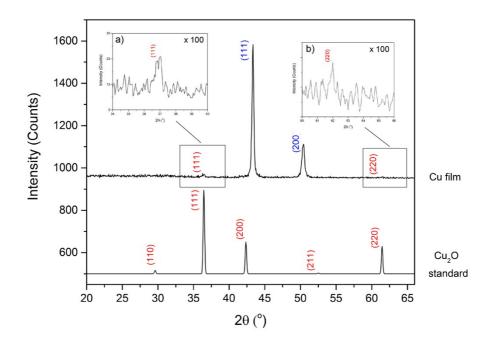


Figure 1 (SI): The XRD pattern for the Cu film grown *via* AACVD. When the 34-40° and 60-65° 20 regions are magnified peaks matching to the (111) and (220) reflections of Cu₂O (standard pattern also shown) are evident. Note (hkl) values in red are for Cu₂O and blue for Cu metal.

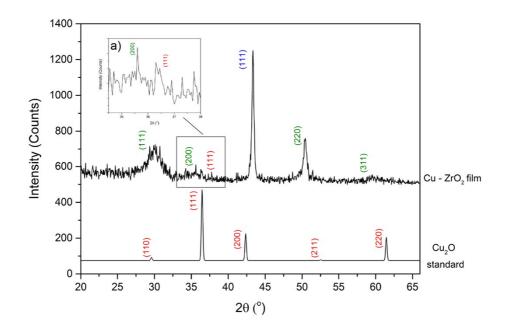


Figure 2 (SI): The XRD pattern for the $Cu - ZrO_2$ film grown *via* AACVD. When the 34-40° 20 region magnified peaks matching to the (111) Cu_2O (standard pattern also shown) is evident. Note (hkl) values in red are for Cu_2O , green for ZrO_2 and blue for Cu metal.

Table 1: Estimated crystallite size calculated from XRD data using the Debye – Scherrer formula.

		Bragg Angle				
	hkl	20/°	θB/rad	cos(θB)	βcos(θB)	Diameter/nm
Cu	111	43.3	0.3782	0.9293	0.0051	27
Cu	200	50.4	0.4397	0.9049	0.0069	20
	111	30.4	0.2649	0.9651	0.0169	8
ZrO ₂	200	35.2	0.3068	0.9533	0.0142	10
	220	50.6	0.4413	0.9042	0.0236	6
C	111 (ZrO ₂)	30.0	0.2614	0.9660	0.0348	4
Cu- ZrO ₂	111 (Cu)	43.3	0.3782	0.9293	0.0057	24
2102	220 (ZrO ₂)	50.4	0.4399	0.9048	0.0092	15

Table 2: XPS elemental analysis showing peak area and corrected peak area for a) Cu (0) / Cu (I)2p b) Cu (II) 2p and Zr (IV) 2p. c) Shows the Cu to Zr and Cu (0) / Cu(I) to Cu (II) ratios.

a) [Cu (0) / Cu (I)
	2p3/2 area	237752
	2p1/2 area	118876
	2p area	356627
	R.S.F	6.3
	Corrected 2p area	56608

b)		Cu (II)
D)		
	2p3/2 area	39658
	2p1/2 area	19829
	2p area	59488
	Shake-up satellite peak	
	area	13398
	R.S.F	6.3
	Corrected area	11569

c)		Zr (IV)
♥/ □	3d5/2 area	38108
	3d3/2 area	25418
	3d area	63526
	R.S.F	2.1
	Corrected 2p area	30250

d)	Cu : Zr	2.3	
	Cu (0)/Cu (I) : Cu (II)	4.9	

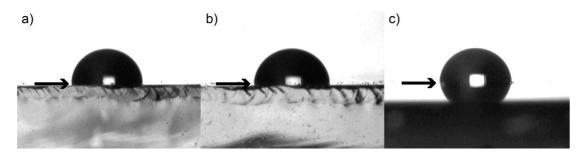


Figure 3 (SI): The water contact angle on the surface of a) Cu, b) ZrO₂ and c) Cu - ZrO₂ films grown *via* AACVD at 430 °C. The arrows show the contact line.

Wettability studies on the films determined *via* water contact angle measurements show that the contact angle is similar (ca. 95°) for all the AACVD prepared films. Thus eliminating the contact between the bacteria solution and the film as a variable.