Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2016

Journal of Materials Chemistry B

Supplementary Information for:

Sensing a *Bacillis Anthracis* Biomarker with well-known OLED Emitter EuTta₃Phen

Michael A. Shipman, Kumaree. J. Ramhit and Barry. A. Blight*a

^a University of Kent, School of Physical Sciences, Ingram Building, Canterbury, CT2 7NH, United Kingdom.

Email: <u>b.blight@kent.ac.uk</u>

General Experimental:

Synthesis of Eu(Tta)₃Phen was synthesized as previously described (and outlined below). Dry solvents were obtained from a solvent purification system (Innovation Technologies) free of stabilizers. All organic reagents were purchased from Aldrich Chemical Company and used without further purification. ¹H-NMR spectral analyses were performed on a JEOL ECS-400MHz NMR spectrometer THF- d_8 as the solvent purchased from Goss Scientific and used directly from ampules. Mass determinations were performed by Southampton Mass Spectrometry Service based out of Southampton University. The spectra were taken using a MaXis HPLC-ESI spectrometer equipped with a Time of Flight analyser. UV- Vis spectra were taken on a Shimadzu UV-1800 Spectrometer using 1 cm quartz cells, while fluorimetry data was collected on an Edinburgh Instruments FS5 Fluorescence emission spectrophotometer using 1 cm quartz cells. All titration experiments were performed using Hamilton airtight microsyringes. Elemental analyses were performed by the London Metropolitan University Elemental Analysis Service.

Experimental Procedures:

Preparation $Eu(Tta)_3$ Phen (1).¹

Europium(III) chloride hexahydrate (0.500g, 1.37 mmol) was dissolved in methanol (~20 mL). minimum amount of А solution of the thenoyltrifluoroacetone (TtaH) (0.850g, 3.83mmol) in methanol (6 ml) was added and left to stir for half an hour. The transparent solution was neutralized using 5% NaOH solution, followed by dropwise addition of a *1,10-phenanthroline* (Phen) solution (0.243 g, 1.35 mmol) in methanol (3 mL). The milky mixture was allowed to stir for half an hour. The solution was then vacuum-filtered and washed repeatedly with methanol. The filtered sample was left on a highvacuum line to dry the sample overnight before being sealed with parafilm, wrapped in foil and placed in a draw to eliminate potential sample photodegradation. ¹H NMR (400 MHz, THF-*d*₈) δ 10.39 (bs), 9.67 (bs), 8.61 (bs), 7.07 (bs), 6.33 (bs), 5.83 (bs), 2.38 (bs). CHN-Anal. calc'd for C₃₇H₂₄F₉N₂O₇S₃Eu: C, 43.24; H, 2.35; N, 2.73; found C, 43.61; H, 2.04; N, 2.71.

Preparation of $La(Tta)_3$ Phen (2).¹

A modified procedure from **1**, Lanthanum(III) Nitrate hydrate (0.590g, 1.3 mmol) was dissolved in the minimum amount of methanol (~20 mL). A solution of *thenoyltrifluoroacetone (TtaH)* (0.850g, 3.83mmol) in methanol (6 ml) was added and left to stir for half an hour. The transparent solution was neutralized using 5% NaOH solution, followed by dropwise addition of a *1,10-phenanthroline (Phen)* solution (0.243 g, 1.35 mmol) in methanol (3 mL). The milky mixture was allowed to stir for half an hour. The filtered sample was left on a high-vacuum line to dry the sample overnight. ¹H NMR (400 MHz, THF-*d*₈) δ 9.71 (bs,

2H), 8.36 (bs, 2H), 7.80 (bs, 3H), 7.71 (bs, 2H), 7.46 (bs, 2H), 7.45 (bs, 3H), 6.89 (bs, 3H), 6.01 (bs, 3H); 13 C NMR (400 MHz, THF- d_8) δ 180.1, 151.1, 146.3, 145.6, 136.8, 131.5, 129.0, 128.9, 127.4, 126.3, 123.2, 120.8, 90.7. CHN-Anal. calc'd for C₃₇H₂₄F₉N₂O₇S₃La: C, 43.80; H, 2.38; N, 2.76; found C, 43.34; H, 2.25; N, 3.22.

UV-Vis absorption Studies:

Series of spectra were collected assessing the absorption spectra of 1 and the response imparted by the respective addition of H_2O , TBA· H_2PO_4 , and/or dipicolinic acid in small aliquots, as noted.

Figure S1. Eu(Tta)₃Phen **1** (1x10⁻⁵ M; THF) titrated with 5% aliquots of deionised H_2O at 298 K.

Figure S2. Eu(Tta)₃Phen **1** (1x10⁻⁵ M; THF) titrated with 0.5 equivalent aliquots of TBA·H₂PO₄ ($2.0x10^{-4}M$) at 298 K.

Figure S3. Eu(Tta)₃Phen (1x10⁻⁵ M; THF, 2% water) titrated with aliquots of TBA H_2PO_4 (2.0x10⁻⁴M) at 298 K.

Fluorescence Emission Studies:

Series of spectra were collected assessing the emission of 1 and the emissive-response imparted by the respective addition of H_2O , TBA· H_2PO_4 , and/or dipicolinic acid in small aliquots, as noted.

Figure S4. Eu(Tta)₃Phen **1** (1x10⁻⁵ M; THF) titrated with successive addition of deionised H₂O, as indicated, at 298 K (λ_{ex} = 340 nm).

Figure S5. Eu(Tta)₃Phen **1** (1x10⁻⁵ M; THF) titrated with successive aliquots of TBA·H₂PO₄ (2.0x10⁻⁴M), up to 10.0 molar equivalents (298 K; λ_{ex} = 340 nm).

Figure S6. Eu(Tta)₃Phen **1** (1x10⁻⁵ M; THF, 2% water) titrated with successive aliquots of TBA·H₂PO₄ (2.0x10⁻⁴M), up to 10.0 molar equivalents at 298 K (λ_{ex} = 340 nm).

Figure S7. Eu(Tta)₃Phen **1** (1x10⁻⁵ M; THF) titrated with successive aliquots of DPA (2.0x10⁻⁴M), up to 10.0 molar equivalents at 298 K (λ_{ex} = 340 nm).

Figure S8. Eu(Tta)₃Phen 1 (1x10⁻⁵ M; THF, 2% water) titrated with successive aliquots of DPA ($2.0x10^{-4}$ M), up to 5.0 molar equivalents at 298 K (λ_{ex} = 340 nm).

Figure S8. Eu(Tta)₃Phen **1** and TBA·H₂PO₄ (1x10⁻⁵ M and 5.0x10⁻⁶ M respectively in THF with 2% water) titrated with successive aliquots of DPA (2.0x10⁻⁴M), up to 5.0 molar equivalents at 298 K (λ_{ex} = 340 nm).

Figure S9. Eu(Tta)₃Phen **1** (1x10⁻⁸ M; THF; 298 K) titrated with successive aliquots of DPA ($2.0x10^{-7}$ M), up to 5.0 molar equivalents at 298 K (λ_{ex} = 340 nm).

Table S1. Emission intensities (at 609 nm) of **1** (1 x 10⁻⁵ M) titrated with aliquots of each analyte. DPA: dipicolinic acid; Pic: 2-picolinic acid; Nic: nicotinic acid; Cat: catechol; BenzA: benzoic acid; Gly: glycine; Asp: *L*-aspartic acid.

	Emission Intensity								
[Analyte]	DPA	Pic	Nic	Cat	BenzA	Gly	Asp		
0	9.08E+04	4.63E+03	4.17E+03	9.427E+04	4.52E+03	4.88E+03	4.47E+03		
1.00E+05	7.10E+04	4.52E+03	4.02E+03	9.102E+04	4.30E+03	4.74E+03	4.18E+03		
2.00E+05	3.99E+04	4.34E+03	3.96E+03	8.322E+04	4.21E+03	4.22E+03	4.11E+03		
3.00E+05	1.55E+04	4.11E+03	3.87E+03	8.181E+04	4.16E+03	4.01E+03	3.96E+03		

Table S2. Degree of quenching calculated from Table S1 of **1** (1 x 10⁻⁵ M) titrated with aliquots of each analyte. DPA: dipicolinic acid; Pic: 2-picolinic acid; Nic: nicotinic acid; Cat: catechol; BenzA: benzoic acid; Gly: glycine; Asp: *L*-aspartic acid.

	(I _o -I)/I _o									
Equiv.	DPA	Pic	Nic	Cat	BenzA	Gly	Asp			
0	0	0	0	0	0	0	0			
1	0.218	0.022	0.035	0.035	0.050	0.029	0.065			
2	0.561	0.062	0.049	0.117	0.070	0.136	0.080			
3	0.840	0.112	0.071	0.132	0.081	0.179	0.116			

1H NMR Studies:

Series of spectra were collected assessing the NMR signals of **1** and the response observed upon addition of dipicolinic acid in small aliquots, as noted. This was then repeated using compound **2**.

Figure S10. Overlaid NMR Spectra of a) $Eu(tta)_3$ Phen 1 (5.0x10⁻³M), b) $Eu(tta)_3$ Phen at a 1:1 ratio with DPA, and c) $Eu(tta)_3$ Phen at a 1:2 ratio with DPA in THF- d_8 (298 K). Note: Para-magnetic nature of 1 limits ability to appropriately interpret.

Figure S11. Overlaid ¹H-NMR Spectra of (a) La(Tta)₃Phen **2** ($5.0x10^{-3}$ M), (b) La(Tta)₃Phen at a 1:1 ratio with DPA, (c) TtaH, and (d) Phen in THF-*d*₈ (298 K). Note: upon addition of DPA, La-DPA complex precipitates leaving unreacted **2** and no-longer ligated TtaH visible in NMR spectrum (b).

Figure S11. Illustrated is a proposed ligand exchange pathway for the mode of action in sensing **1**. This is supported by the stepwise reduction in emission intensity and in the appearance of free TtaH (thienoyltrifluoroacetone) as **2** is titrated with DPA and visualised by ¹H NMR.

References:

1. C. Freund, W. Porzio, L. Giovanella, F. Vignali, M. Pasini and S. Destri, *Inorg. Chem.* 2011, **50**, 5417.