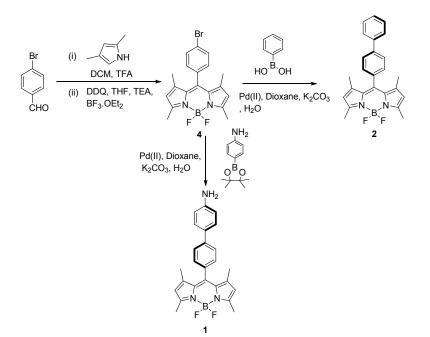
Electronic Supplementary Information

A bodipy based fluorescent probe for evaluating and identifying cancer, normal and apoptotic C6 cells on the basis of changes in intracellular viscosity

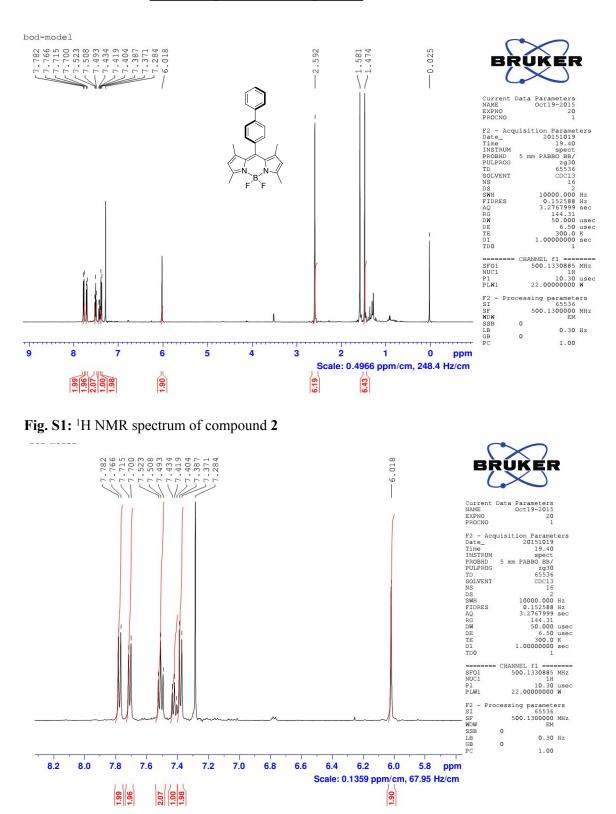

Neha Gupta[†], Shahi Imam Reja[†], Vandana Bhalla[†], Muskan Gupta[‡], Gurcharan Kaur[‡] and Manoj Kumar[†]*

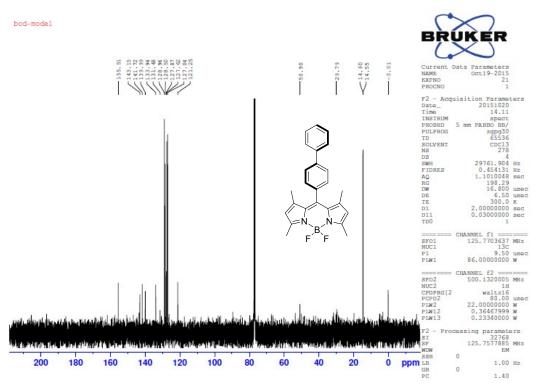
[†]Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1 and [‡]Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India. Fax: +91 (0)183 2258820; Tel: +91 (0)183 2258802 Ex3205; E-mail: mksharmaa@yahoo.co.in

- S3 Synthetic scheme for probe 1 and compound 2
- S4 ¹H NMR spectrum of compound **2**
- S5 ¹³C NMR spectrum of compound **2**
- S5 Mass spectrum of compound 2
- S6 Lifetime of probe **1** in different viscosity medium (0-99% methanol:glycerol fractions)
- S7 Fluorescence time resolved spectra of probe **1** in methanol-glycerol (1:1, v/v) with varying temperature (80-0°C)
- S7 Fluorescence lifetime of probe 1 recorded in methanol–glycerol mixtures of various compositions, plotted against viscosity of the mixture. The data represented at temperatures between 293 and 333 K
- S8 Plot of linear relationship of log I_{517} and log η
- S8 Fluorescence and fluorescence lifetime spectra of compound **2** (5.0 μ M) in different methanol-glycerol fractions (0 to 99%); $\lambda_{em} = 510$ nm and $\lambda_{ex} = 470$ and 488nm.
- S9-10 VT-¹H NMR spectra of probe 1.
- S11 Fluorescence and fluorescence lifetime spectra of probe 1 (5.0 μ M) at 517 nm in different solvent system in 25 °C; $\lambda_{ex} = 470$ and 488 nm.
- S12 Effect of pH on the fluorescence emission intensity of probe 1 and pK_a value plot
- S13 Fluorescence spectra and Bar diagram of probe 1 (5.0 μ M) in methanol with addition of different analytes

- S14 Representation of optimized geometry of probe 1 in gas phase
- S15 DFT studies of probe 1 in different solvents (polar and non-polar)
- S16 Energy profile of probe 1 molecular orbitals in different solvents and at different dihedral angle
- S17 Plot of energy gap between the S_0 and S_1 states of probe 1 with different dihedral angle (ϕ) around the C36-C21-C10-C11.
- S18 Plot depicting the variation of S_0 - S_1 energy gap at different dihedral angles in case of compound **2**
- S19 MTT data of probe 1 for 24 hrs.
- S19 Fluorescence spectra of probe 1 (5.0 μ M) in water on addition of retinoic acid (30 μ M) at 25 °C; $\lambda_{ex} = 470$ nm.
- S20 Bar graph depicting the relative fluorescence intensity of the probe $1 (5 \mu M)$ in cell based model system
- S20 Flow cytometer and immunocytofluorescence studies in cell based model system
- S21 Cell imaging and intensity analysis of probe 1 in cell based model system of cancer and normal cells i.e., in C6 and BV2 cells
- S22 Control experiment of probe 1 in C6 glial cells without addition of camptothecin
- S23 TCSPC histogram of cell model system and lifetime of probe 1 in cells.
- S24 Calibration plot of life time for probe **1** recorded in methanol-glycerol mixtures of various compositions, plotted against the viscosity of mixtures.
- S25 Procedure for cell culture and fluorescence detection

Synthetic routes and characteristic data




Scheme S1: Synthesis of probe 1 and compound 2

Synthesis of probe 1:

To a solution of 4 (0.30 g, 0.744 mmol) and boronic ester of aniline (0.19 g, 0.893 mmol) in dioxane (20 ml) were added K₂CO₃ (0.41 g, 2.977 mmol), distilled water (1 mL), and [Pd(Cl)₂(PPh₃)₂] (0.31 g, 0.44 mmol) under nitrogen. The reaction mixture was then refluxed overnight. The dioxane was then removed under vacuum, and the residue so obtained was extracted with dichloromethane, and dried over anhydrous Na₂SO₄. The organic layer was removed, and the compound was purified by column chromatography using hexane/chloroform (6:4) as an eluent to give 0.176 g (57 %) of probe **1** as orange coloured solid. ¹H NMR (CDCl₃, 400 MHz, ppm) 1.40 (s, 6 H), 2.56 (s, 6 H), 3.70 (s, 2H), 5.99 (s, 2 H), 6.80 (d, *J* = 8 Hz, 2 H), 7.29 (d, *J* = 8, 2 H), 7.51 (d, *J* = 8, 2 H), 7.68 (d, *J* = 8, 2 H). ¹³C NMR (CDCl₃, 100 MHz, δ = ppm) = 29.32, 66.84, 115.16, 117.17, 121.14, 126.39, 127.99, 128.37, 131.29, 134.93, 135.24, 143.16, 145.46, 155.30; IR (KBr) v_{max} = 3496 cm⁻¹ (primary aromatic amine) and 3399 cm⁻¹ (NH-stretch). TOF MS ES⁺, m/z: 416.2136 (M+H⁺). HRMS data for C₂₅H₂₄BF₂N₃: Found: 416.2105 (M+H⁺); calculated: 416.2109 (M+H⁺).

¹H NMR spectrum of compound 2

¹³C NMR and mass spectrum of compound 2

Fig. S2: ¹³C NMR spectrum of compound 2

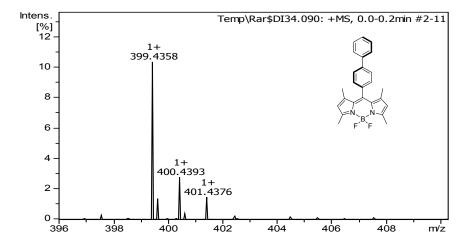
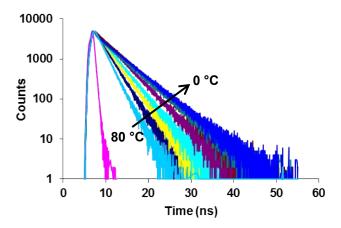
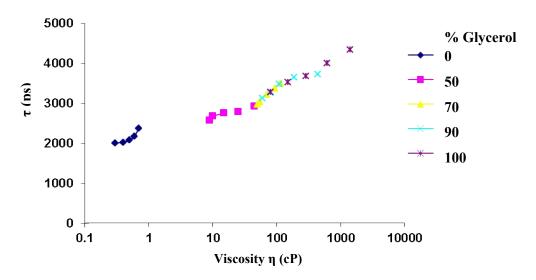



Fig. S3: Mass spectrum of compound 2


Methanol: Glycerol	Probe 1 (lifetime in ns)
(v/v)	
10:0	2.35
9:1	2.65
8:2	2.74
7:3	2.81
6:4	3.02
5:5	3.12
4:6	3.31
3:7	3.54
2:8	3.82
1:9	3.96
0:10	4.35

Lifetime data of probe 1 in different methanol glycerol fractions

Table S1: Lifetime of probe 1 (5.0 μ M) in different methanol: glycerol fractions at 517 nm using $\lambda_{ex} = 488$ nm

Fig. S4: Fluorescence lifetime spectra of probe **1** (5.0 μ M) at 517 nm in methanol-glycerol (1:1, v/v) system with varying temperature 0-80 °C; $\lambda_{ex} = 488$ nm.

Fig. S5: Fluorescence lifetime of probe 1 recorded in methanol–glycerol mixtures of various compositions, plotted against viscosity of the mixture. The data represented at temperatures between 293 and 333 K.

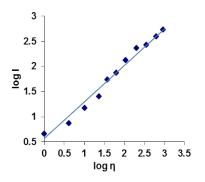


Fig. S6: Linear relationship of log I_{517} and log η , R^2 =0.9914, X=0.52

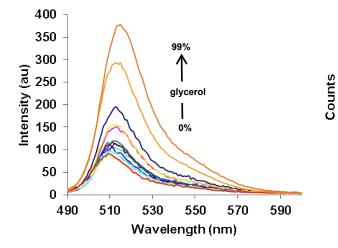


Fig. S7: Fluorescence spectra of compound 2 (5.0 μ M) at nm in varying methanol-glycerol (0-99%) fractions at λ_{em} = 510 and λ_{ex} = 470 nm.

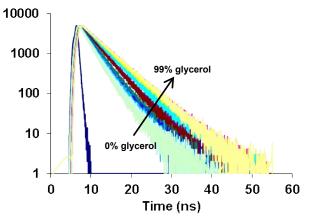
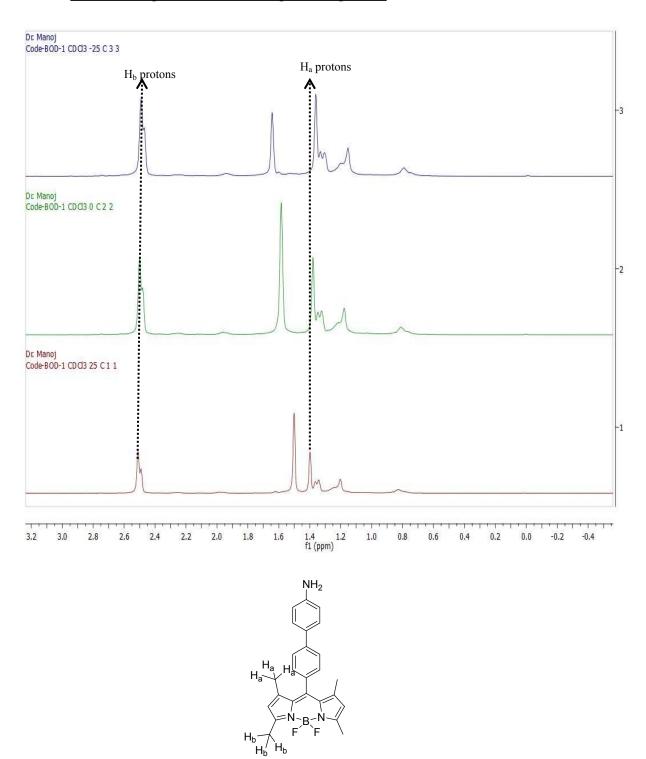



Fig. S8: Fluorescence lifetime spectra of compound 2 (5.0 μ M) at 510 nm in varying methanol-glycerol (0-99%) fractions $\lambda_{ex} = 488$ nm.

Variable temperature -¹H NMR spectra of probe 1

Fig. S9: VT-¹H NMR spectra of probe 1

VT-¹H NMR spectra of probe 1 (superimposed spectra)

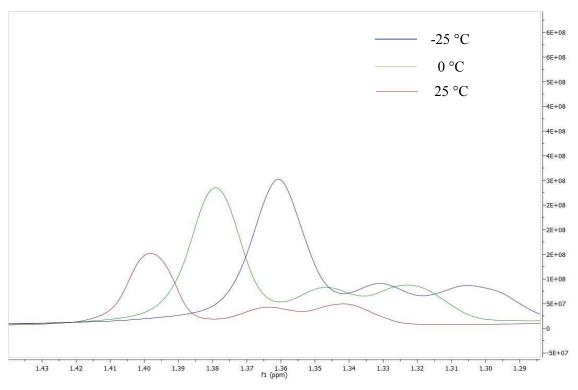
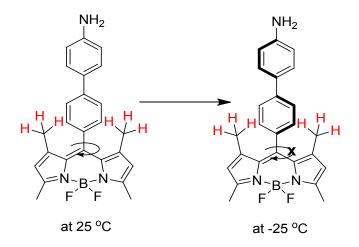



Fig. S10: VT-¹H NMR spectra of probe 1 (superimposed spectra)

VT-¹H NMR of probe **1** in CDCl₃, the methyl hydrogen of 1 and 7 position (red colour) of bodipy have upfield shift about 0.04 ppm on changing temperature from 25 °C to -25 °C.

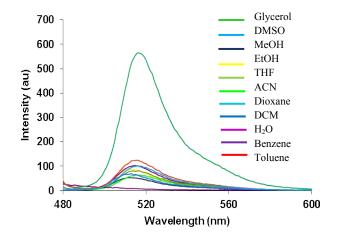
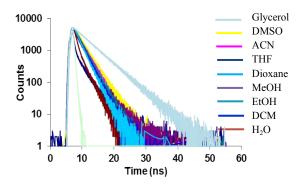



Fig. S11: Fluorescence spectra of probe 1 (5.0 μ M) in different solvent system at 25 °C; $\lambda_{ex} = 470$ nm and $\lambda_{em} = 517$.

Fig. S12: Fluorescence lifetime spectra of probe **1** (5.0 μ M) at 517 nm in different solvent system in 25 °C; $\lambda_{ex} = 488$ nm.

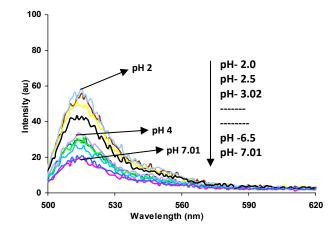


Fig. S13: Change in fluorescence spectra of probe 1 (5 μ M) at different pH values ($\lambda_{ex} = 470$ nm and $\lambda_{em} = 517$).

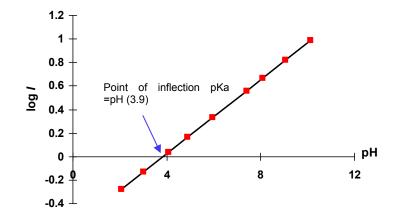


Fig. S14: The log I–pH^{*} plot for the probe 1

***Calculations:** Using equation: pKa = m.H_{1/2} + log I, where I= $(\mathcal{E}_{obs}-\mathcal{E}_{fb})/(\mathcal{E}_{ca}-\mathcal{E}_{obs})$ (at half protonation point log I will be equal to zero) from graph, pKa = H_{1/2} = 3.9

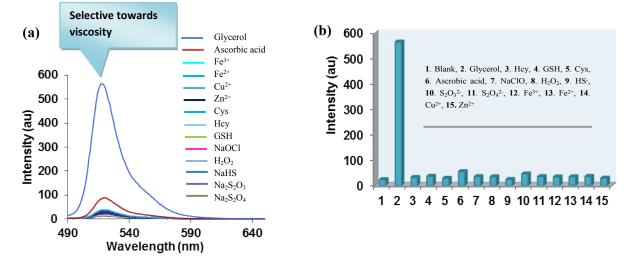
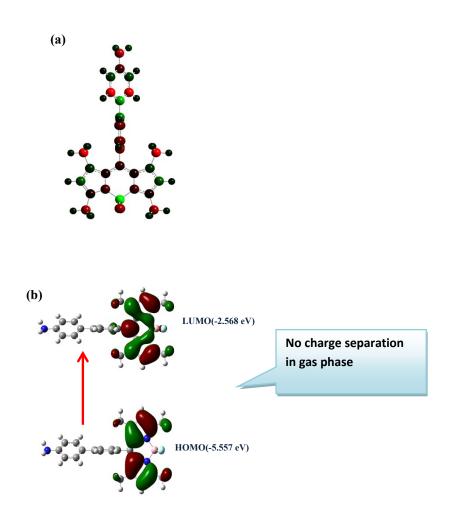



Fig. S15: (a) Fluorescence spectra and (b) Bar diagram of probe 1 (5.0 μ M) in methanol with addition of different analytes (Cys, Hcy, GSH, NaClO, H₂O₂, NaHS, ascorbic acid, Na₂S₂O₃, Na₂S₂O₄, Fe³⁺, Fe²⁺, Cu²⁺, Zn²⁺) (100 μ M) at 25 °C; λ_{ex} = 470 nm.

Fig. S16: (a) The optimized charge density geometry of probe **1**. (b) Frontier molecular orbital (MO) of probe **1** showing no charge separation in gas phase.

DFT studies of probe 1 in different solvents (polar and non-polar)

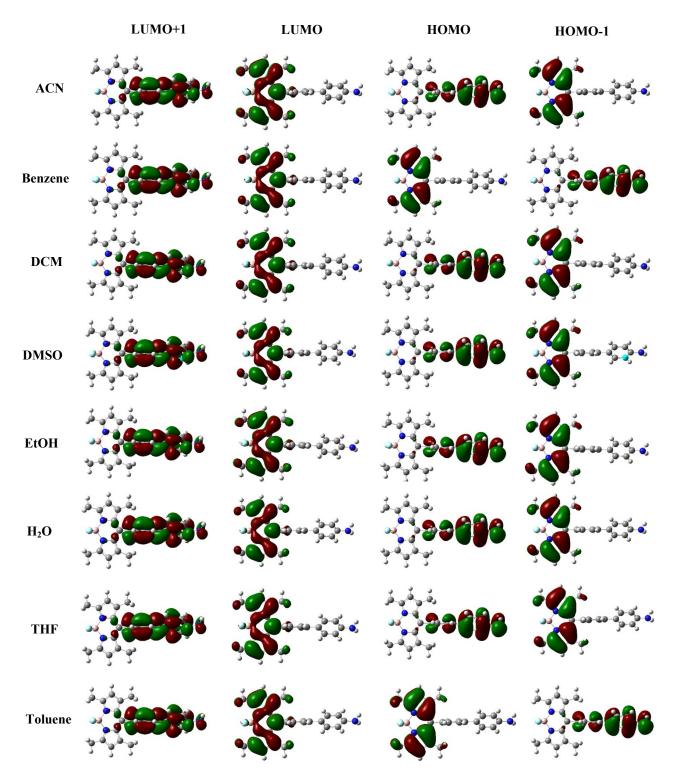


Fig. S17: Frontier molecular orbital (MO) of probe 1 by considering the effect of different solvents (polar and non-polar).

Energy profile of probe 1 molecular orbitals in different solvents and at different dihedral angle

Solvent	LUMO+1 (eV)	LUMO (eV)	HOMO (eV)	HOMO-1 (eV)	Δ _{HOMO-LUMO} (eV)
ACN	-0.772531	-2.506441	-5.392754	-5.531804	-2.886312
Benzene	-0.760286	-2.371201	-5.383774	-5.410441	-3.012573
DCM	-0.765728	-2.472155	-5.392210	-5.494525	-2.920054
DMSO	-0.773347	-2.509434	-5.392754	-5.534797	-2.883319
Ethanol	-0.771443	-2.501271	-5.392482	-5.526090	-2.891210
Methanol	-0.772259	-2.505353	-5.392754	-5.530444	-2.887401
H ₂ O	-0.774164	-2.513244	-5.393026	-5.538879	-2.879782
THF	-0.764640	-2.463719	-5.392754	-5.485273	-2.92903
Toluene	-0.760014	-2.376099	-5.389217	-5.408809	-3.013117

Fig. S18: Energy profile of probe 1 molecular orbitals in different solvents

Dihedral angle	LUMO+1 (eV)	LUMO (eV)	HOMO (eV)	HOMO-1 (eV)	$\Delta_{ m HOMO-LUMO}$ (eV)
90°	-0.89634	-2.45038	-5.14513	-5.37261	-2. 69475
120°	-0.83511	-2.48412	-5.17397	-5.36200	-2. 68985
150°	-0. 69443	-2.5586	-5.2493	-5.3456	-2. 6907
180°	-0. 45476	-2.96604	-5.2586	-5.32690	-2. 29256

Fig. S19: Energy profile of probe 1 molecular orbitals at different dihedral angle.

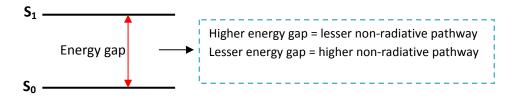


Fig. S20: Schematic representation of dependence of fluorescence emission on S_0 - S_1 energy

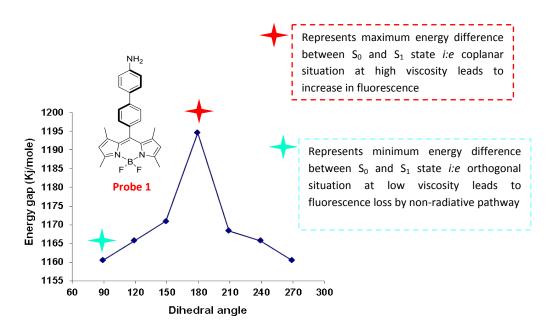


Fig. S21: Plot depicting the variation of S₀ -S₁ energy gap at different dihedral angles in case of probe 1

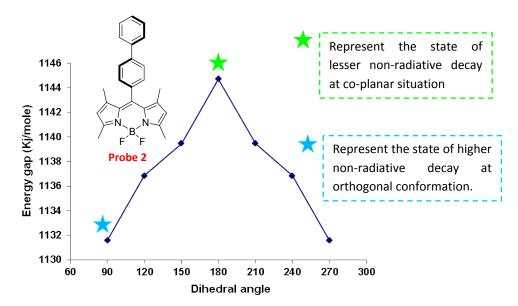
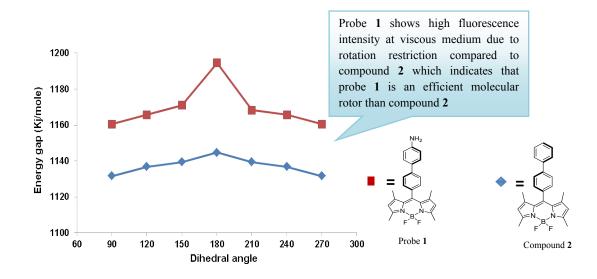



Fig. S22: Plot depicting the variation of S_0 - S_1 energy gap at different dihedral angles in case of compound 2

Fig. S23: Combined plot depicting the variation of S_0 - S_1 energy gap at different dihedral angles for probe 1 and compound 2

Cytotoxicity analysis

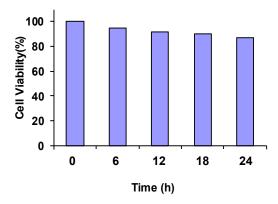


Fig. S24: Cell viability of probe 1 (5.0 µM) at different time intervals

Fluorescence titration of probe 1 with retinoic acid

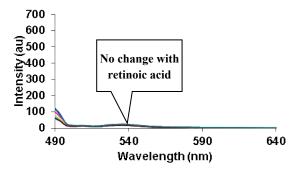
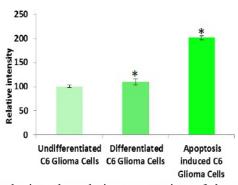



Fig. S25: Fluorescence spectra of probe 1 (5.0 μ M) in water on addition of retinoic acid (30 μ M) at 25 °C; $\lambda_{ex} = 470$ nm and $\lambda_{em} = 517$ nm.

Intensity analysis of probe 1 in cell based model system

Fig. S26: Histogram depicts the relative expression of the probe **1** in different groups "*" represent statistical significant difference among groups.

Undifferentiated RA Camptothecin (A) 100.00% (B) 90.00% cells (%) treated treated cells 80.00% cells (%) (%) 70.00% 60.00% Undifferented C6 Live cells 51.67 24.62 7.1 50.00% glioma cells 40.00% RA differentiated C6 30.00% Early 46.7 71.24 86.7 glioma cells apoptotic cells 20.00% 10.00% apoptotic C6 glioma 0.00% cells Early late Damaged Viable 4.12 6.2 Late 1.53 Apoptotic apoptotic cells or apoptotic cells cells necrotic cells cells Undifferentiated C6 RA treated C6 cells (C) Bcl-xl is expressed in cancer Bcl-xl is suppressed in RA undifferentiated cells i.e no treated cells *i.e* apoptosis

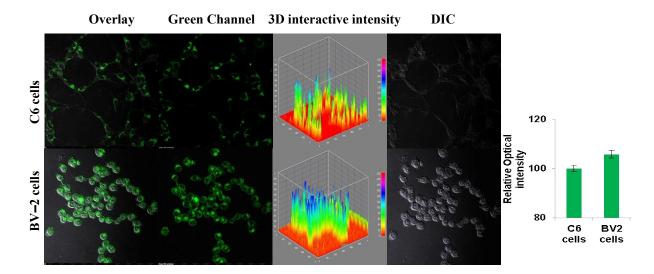
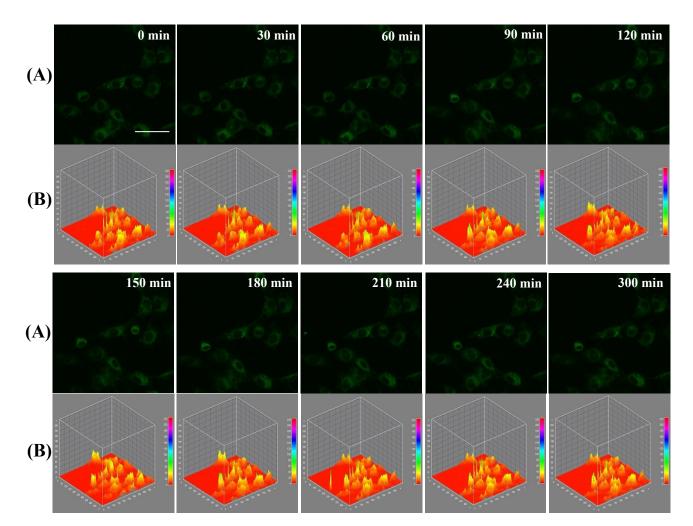
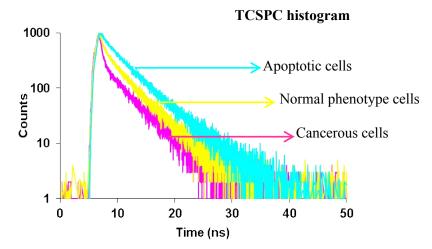

Flow cytometer and immunocytofluorescence studies in cell based model system

Fig. S27: (A) and (B) showing the percentage of live, early apoptotic and late apoptotic cells in cell based model system. (C) Expression of Bcl-xl in undifferentiated and Retinoic treated C6 glial cells by immunocytofluorescence.


initiated in these cells

apoptosis in cancer cells

<u>Cell imaging and intensity analysis of probe 1 in cell based model system of</u> <u>cancer and normal cells</u>


Fig. S28: Fluorescence imaging of probe 1 expression in C6 glioma (undifferentiated cells) and BV–2 (normal) cells. Cells were incubated with probe 1 (5.0 μ M) for 30 min. (a), (d) represents DIC of C6 and BV–2 cell; (b), (e) represents the green channel of C6 and BV–2 cells; (c) and (f) represents the overlay of C6 and BV2 cells. Images are acquired by using excitation and emission windows of $\lambda_{ex} = 488$ and $\lambda_{em} = 500-550$ nm, respectively; Scale bars: 50 μ m.

Control experiment of probe1 in C6 glial cells without addition of camptothecin

Fig. S29: Fluorescence images of C6 glioma cells incubated with 5.0 μ M probe 1 at different time points after addition. Images are acquired by using excitation and emission windows of $\lambda_{ex} = 488$ and $\lambda_{em} = 500-550$ nm, respectively; Scale bars: 50 μ m

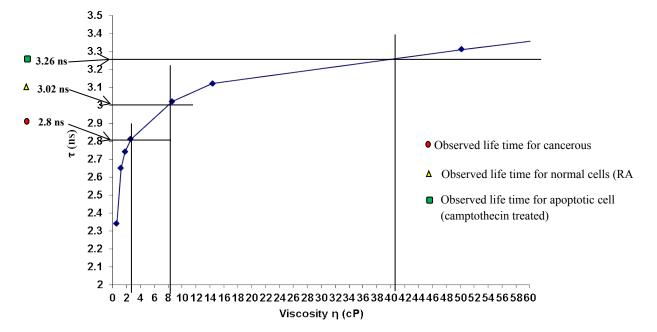

TCSPC histogram and lifetime in different cell model system.

Fig. S30: The decay curves in the TCSPC histogram; Sky blue is represents the apoptotic cells, yellow line represents the normal phenotype cells and pink line represents cancerous cells.

 Table S2:
 Lifetime of probe 1 in different cell model system.

Cells	Lifetime (ns)	χ^2 value
Cancerous cells	2.82	0.9227
Normal phenotype cells	3.02	0.9626
Apoptotic cells	3.26	0.9892

Fig. S31: The life time for probe **1** recorded in methanol-glycerol mixtures of various compositions, plotted against the viscosity of mixtures (for calibration).

Cell culture and treatments

C6 glioma cell was obtained from National Centre for Cell Sciences, Pune, India. Cells were maintained in DMEM supplemented with 1X PSN (GIBCO), 10% FBS (Biological Industries) at 37°C and humid environment containing 5% CO₂. For fluorescence detection, cells were seeded on 18 mm coverslips in 24 well plates. For the purpose of the study, three groups were chosen: I. Differentiated cells, for which undifferentiated C6 glioma cells were treated with 10 μ M RA after every 24 h for 4 days to induce differentiation of glioma cells as inducing differentiation is one of effective method of treating gliomas. Then cells were exposed to the 5.0 μ M probe 1 for 30 min. II. Undifferentiated cancerous C6 glioma cells and III. Apoptotic cells for which undifferentiated C6 glioma cells were treated with 100 μ M Camptothecin then with 5.0 μ M of probe 1 exposure for 24 hours.

For Fluorescence Detection

Cell of different group after their required treatments were then washed with 1X PBS thrice for 5 minutes each and then observed under confocal microscope. All images were taken with A1R Nikon Laser Scanning Confocal microscope using 488 nm laser.

Fluorescence lifetime imaging

After cell treatment, lifetime images were captured with an inverted-type laser scanning confocal microscope with a 60X objective. The emission was collected through a 500 ± 30 nm band pass filter.

Statistical analysis

Values are expressed as mean \pm SEM. The SigmaStat for Windows (version 3.5) was adopted to analyse the results by One Way ANOVA test in order to determine the significance of the means. Values of p< 0.05 were considered as statistically significant.