Electronic Supplementary Information

Near-Infrared Triggered Generation of Reactive Oxygen Species from Upconverting Nanoparticles Decorated with an Organoiridium Complex

Joe Gerald Jesu Raj^a, Marta Quintanilla^a and Fiorenzo Vetrone^{*a, b}

^a Institut National de la Recherche Scientifique (INRS) - Énergie, Matériaux et

Télécommunications (EMT), Université du Québec, Varennes, J3X 1S2 Québec, Canada

^b Centre for Self-Assembled Chemical Structures, McGill University, Montreal, QC H3A 2K6, Canada

* Corresponding Author: vetrone@emt.inrs.ca

Contents:

- (1) Mass spectra of the dimeric iridium precursor complex and the final iridium complex.
- (2) Loading of Ir complex on the silica coated $LiYF_4$: Tm^{3+} , Yb^{3+} UCNPs.
- (3) DLS results of the LiYF₄: Tm³⁺, Yb³⁺@SiO₂@Ir nanostructures.
- (4) XRD results of $LiYF_4$: Tm^{3+} , Yb^{3+} @SiO₂ UCNPs.
- (5) FTIR and XPS results
- (6) Mechanism of Tm^{3+}/Yb^{3+} upconversion

Fig. S1. Mass spectra of the dimeric iridium precursor complex $[(ppy)_2Ir(\mu-Cl)]_2$ (top) and the final iridium complex $[(ppy)_2Ir(dcbpy)]^+$ PF₆⁻ (bottom) showing molecular ion peaks at *m/z*: 1072 and 745, respectively.

Fig. S2. Loading of the Ir complex on the SiO₂ coated LiYF₄:Tm³⁺, Yb³⁺ UCNPs. The loading percentage was calculated to be 60.71% Increased loading showed increased absorbance confirming the successful encapsulation of the Ir complex on the surface of SiO₂.

Fig. S3. DLS results of the LiYF₄: Tm^{3+} , $\text{Yb}^{3+}@\text{SiO}_2@\text{Ir}$ nanostructures. Average particle diameter was determined to be 135 nm. Note: All DLS measurements were performed in PBS buffer solution and the LiYF₄: Tm^{3+} , $\text{Yb}^{3+}@\text{SiO}_2@\text{Ir}$ nanostructures were highly stable.

Fig. S4. XRD pattern of LiYF₄:Tm³⁺, Yb³⁺@SiO₂ UCNPs along with the corresponding reference pattern for LiYF₄ crystals (JCPDS-01-077-0816).

Fig. S5 (A) FTIR spectra of the parent oleate-capped LiYF₄:Tm³⁺, Yb³⁺ UCNPs (black line), UCNPs@SiO₂ (blue line) and UCNPs@SiO₂@Ir nanostructures (green line). (B) XPS spectrum of the LiYF₄: Tm³⁺, Yb³⁺@SiO₂@Ir nanostructures.

Fig. S6. Energy level diagrams of Yb^{3+} and Tm^{3+} ions showing the different mechanisms leading to the observed upconverted emissions following 980 nm excitation. Curved arrows indicate non-radiative energy transfer from excited Yb^{3+} ions to the Tm^{3+} ions sequentially populating the various excited states; The dotted arrows pointing downwards indicate multiphonon relaxation to the lower-lying levels; the connected arrows in various shades of blue show the cross-relaxation mechanisms possible for populating the ${}^{1}D_{2}$ state.