Supporting Information

Albumin-polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: Degradable vs non-degradable polymers

Yanyan Jiang ${ }^{1}$, Hongxu Lu ${ }^{1}$, Aydan Dag ${ }^{2}$, Gene Hart-Smith ${ }^{3}$, Martina H. Stenzel ${ }^{1,{ }^{\text {, }}}$
${ }^{1}$ Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering and School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
${ }^{2}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul, Turkey
${ }^{3}$ Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia

Sample name	Hydrodynamic diameter (nm)	PDI
BSA-PMMA nanoparticle	147 ± 11	0.35

Figure S1: TEM image and the DLS information of BSA-PMMA nanoparticles.

Figure S2: ${ }^{1} H$ NMR spectrum of 4,10-dioxatricyclo[5.2.1.0 ${ }^{2,6}$ dec-8-ene-3,5-dione (1) in CDCl_{3}.

Figure S3: ${ }^{13}$ C NMR spectrum of 4,10-dioxatricyclo[5.2.1.0 ${ }^{2,6}$ dec-8-ene-3,5-dione (1) in CDCl_{3}.

Figure S4: ${ }^{1}$ H NMR spectrum of 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.0 ${ }^{2,6}$ dec-8-ene-3,5- dione (2) in CDCl_{3}.

Figure S5: ${ }^{13}$ C NMR spectrum of 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene-3,5- dione (2) in CDCl_{3}.

Figure S6: ${ }^{1} \mathrm{H}$ NMR spectrum of 1-(2-hydroxyethyl)-1H-pyrrole-2,5-dione (3) in CDCl_{3}.

Figure S7: ${ }^{13}$ C NMR spectrum of 1-(2-hydroxyethyl)-1H-pyrrole-2,5-dione (3) in CDCl_{3}.
(a)

(b)

Figure S8: (a) ${ }^{l} H \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$ spectra of MI-PCL and (b) GPC curve.

Figure S9: The MALDI-TOF spectrum of PCL. 2,5-Dihydroxybenzoic acid (DHB) (20 $\mathrm{mg} / \mathrm{mL}$ in 70:30 acetonitrile:0.1\% tetrafluoroacetic acid) was used as the matrix.

Figure S10: MALDI-TOF spectra of BSA (top) and the BSA-PCL conjugate mixture (bottom). 2,5-Dihydroxybenzoic acid (DHB) ($20 \mathrm{mg} / \mathrm{mL}$ in 70:30 acetonitrile:0.1\% tetrafluoroacetic acid) was used as the matrix. The peaks of the conjugates have been marked with red circles.

Table S1. The particle size of the BSA-PCL micelles with deferent treatment.

Sample Name	Particle size $(\mathrm{d} . \mathrm{nm})$	PDI
BSA-PCL micelle blank	111.23	0.20
BSA-PCL micelle blank 5 days	108.49	0.19
BSA-PCL micelle blank with trypsin	>1000	1
BSA-PCL micelle blank with pancreatin	0	0

Figure S11: SDS-PAGE traces of the conjugation of BSA and PCL (molar ratio=1:1). Lane [A]: protein standard. [B]: Initial BSA. [C]: BSA-PCL micelle. The amphiphilicity of the BSA-PCL conjugates prevents the diffusion of the final product, which is only visible in the well. Comparing the intensity of the BSA residual band in Lane [C] with the initial BSA band in Lane [B], around 50% of BSA has been conjugated to the maleimide PCL.

Table S2. Final concentrations of inhibitors used for the cytotoxicity assay.

Inhibitor	Final concentrations
Chorprozamine hydrochloride	$10 \mu \mathrm{~g} / \mathrm{mL}$
Filipin	$10 \mu \mathrm{~g} / \mathrm{mL}$
Amiloride	$50 \mu \mathrm{M}$
NaN $_{3} /$ Deoxyglucose	$5 \mathrm{mM} / 5 \mathrm{mM}$

Table S3. Summary of inhibitor targets and mechanisms of action.

Inhibitor	Targeted Pathway	Mechanism of Action
Chlorpromazine	Clathrin	Prevention of coated pit formation
Filipin	Lipid Raft/Caveolae	Binding to cholesterol causing sequestration
Amiloride	Macropinocytosis	$\mathrm{Na}+/ \mathrm{H}+$ Exchanger inhibition
$\mathbf{N a N}_{\mathbf{3}}$	Receptor mediated	ATP depletion

Figure S12: TEM image of the Nile red loaded BSA-PCL micelles.

Figure S13: (a) Cytotoxicity test of all the four inhibitors. (b) The influence of the inhibitors on the fluorescence of the BSA-PCL micelle without cells. Data represent means \pm S.D., $n=4$.
(a) Free curcumin

(b) Blank BSA-PCL nanoparticles

(C) Curcumin loaded BSA-PCL nanoparticles

Figure S14. Cytotoxicity assays of (a) free curcumin, (b) blank BSA-PCL nanoparticles and (c) curcumin loaded BSA-PCL nanoparticles against prostate carcinoma cell lines (PC3, DU145 and LNCaP) for 48 h. The mean \pm standard deviations are shown.

