Supplementary information.

LDH-NPs characterization.

Table 1. Elemental analysis and chemical formulae of the LDH nanoparticles.

	-	-	-		-	•
Sample	%Mg	%Al	Mg/Al	% H ₂ O ¹	% total ²	Chemical Formula
1			U	-		
LDH-Cl	20.3	9.8	2.3	13.7	44.8	Mg _{0.70} Al _{0.20} (OH) ₂ Cl _{0.20} ·0.61 H ₂ O
LDH-CO ₂	19.6	10.0	2.2	14 7	45.7	$Mg_{0} = Al_{0} = 1$ (OH) $_{2}$ (CO ₂) $_{0} = 1$: 0.66 H ₂ O
	17.0	10.0	2.2	14.7	-13.7	
LDH-DS	98	5.5	2.2	7.6	63.6	$Mg_{0.67}Al_{0.22}(OH)_{2}DS_{0.25}:0.72H2O$
	2.0	0.0		1.0	00.0	

Comment: The chemical analysis of the samples indicated that single Mg–Al–LDH phases were obtained in each case.

Figure S1: (Left) PXRD patterns (A) and FT-IR spectra (B) and (right) TG/DTA diagrams of LDH-Cl, LDH-CO₃ and LDH-DS samples.

Comment: PXRD patterns, FT-IR spectra and thermal analysis curves of the samples indicated the presence of pure LDH phases containing Cl⁻, CO_3^{2-} and DS⁻ anions, respectively. The PXRD patterns portrayed typical LDH features; narrow and symmetric peaks at 2θ below 30°, and broad and asymmetric ones above this value. These peaks were indexed in a rhombohedral lattice and the *c* parameters obtained (24.0, 22.7 and 76.1 Å for LDH-Cl, LDH- CO₃ and LDH-DS, respectively). The FT-IR spectra of the solids presented bands corresponding to the hydroxilated layers (below 1000 cm⁻¹) and interlayer water (between 1639 and 1658 cm⁻¹,

respectively). Thus, LDH-CO₃ spectra showed a band at 1361 cm⁻¹, which was assigned to the antisymmetrical stretching mode v_3 (*E'*) of the free carbonate anion. Finally, LDH-DS presented bands corresponding to CH bending (1469 cm⁻¹), SO₃⁻ antisymmetric and symmetric stretching (1221 cm⁻¹ and 1084 cm⁻¹, respectively) and C-S stretching (634 cm⁻¹) vibrations.

Colloidal stability of LDH-NPs in biological fluids.

Figure S2: The effect of the adsorbed amount (Γ) of albumin on the colloidal stability in physiological solution determined from ζ potential and hydrodynamic diameter (d) of LDH-NPs intercalated with different anions: (black) Cl⁻ (LDH-Cl) and (red) CO₃²⁻ (LDH-CO₃) at different degrees of surface coverage (Γ/Γ_{max}).

Reactivity of LDH-NPs in biological fluids.

Figure S3: The effect of Γ/Γ_{max} on the reactivity determined from acid dissolution experiments of LDH-NPs intercalated with (left) Cl⁻ (LDH-Cl) or (right) CO₃²⁻ (LDH-CO₃) immersed in 5 mM NaCl pH 9.0 (0.250 g/L) at different Γ/Γ_{max} : (black) 0.0, (red) 0.2, (green) 0.5 and (blue) 1.0. The results are expressed as the amount of consumed H⁺ (n_H) as a function of time