(Supporting Information)

A Robust Ionic Liquid – Polymer Gate Insulator for High-Performance Flexible Thin Film Transistors

Jieun Ko,^a Su Jeong Lee,^b Kyongjun Kim,^a EungKyu Lee,^a Keon-Hee Lim,^a Jae-Min Myoung,^b Jeeyoung Yoo,^{*a} and Youn Sang Kim^{*a, c}

^a Program in Nano Science and Technology, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, 151-744, Republic of Korea

^b Department of Advanced Materials Engineering, Yonsei University, Seoul 120-749, Republic of Korea

^c Advanced Institutes of Convergence Technology, 864-1 Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270, Republic of Korea

Contents

- 1. Experimental procedure
- 2. ATR-FT IR Analysis
- 3. Impedance Analysis
- 4. Nano Indenter Analysis
- 5. AFM images of the IL-PVP and ZnO layers
- 6. Hysteresis of the ZnO TFTs

1. Experimental procedure

Preparation of the dielectric layer and semiconductor layer solution

To prepare an ionic liquid - polymer (IL-PVP) solution, poly(4-vinylphenol) (PVP) [Sigma Aldrich, $M_w \sim 25,000$], 4,4⁺-(hexafluoroisopropylidene)diphthalic anhydride (HDA) [Sigma Aldrich, 99%] and propylene glycol monoethyl ether acetate (PMGEA) [Sigma Aldrich, $\geq 99.5\%$] were mixed in a weight ratio of 10 : 1 : 56. The PVP solution was stirred for 12 hr vigorously. Since the ionic liquids are sensitive to water, 1-ethyl-3-methylimidazolium bis(trifluoromethylsylfonyl)imide (EMIM-TFSI) [Sigma Aldrich, $\geq 98\%$] was stored in vacuum oven at 70 °C for 12 hr before use to remove minimum moisture. The dried EMIM-TFSI was added to PVP solution in a 1:1 weight ratio with PVP:EMIM-TFSI. The ionic liquid - polymer solution was stirred for 12 hr vigrously in ambient condition. The semiconductor solution was prepared by dissolving 0.001 mol of zinc oxide (ZnO) [Sigma Aldrich, 99.99%] into 12 ml of ammonium hydroxide [Alfa Aesar, 25 wt% NH₃ in water, 99.99%]. The ZnO solution was refrigerated for 5 hr until obtain clear solution.

Fabrication of the MIM and TFT devices

To faricate the IL-PVP dielectric layer, the IL-PVP solution was spin-coated (30 s, 2000 rpm) onto substrates. The IL-PVP dielectric layer was dried in vacuum oven at 70 °C for 12 hr and annealed at 110 °C for 1 hr on hot plate in ambient condition. For metal-insulator-metal (MIM) devices, the IL-PVP dielectric layer was prepared onto a heavily boron-doped P-type silicon (P^{++} -Si) (100) wafer and an aluminum (Al) electrode was deposited on the dielectric layer by thermal evaporation with 100 nm thickness. For the bottom-contact top-gate (BCTG) TFT, the semiconductor solution was spin-coated (30 s, 3000 rpm) on the UVO treated (30 min) thermal grown 200 nm SiO₂ wafer and annealed at 300 °C for 1 hr. After annealing, the Al source/drain electrodes (W/L : 1000/50 μ m, thickness : 100 nm) were deposited onto the semiconductor layer by thermal evaporation with SUS masks. The IL-PVP dielectric layer was coated (30 s, 2000 rpm) on the source/drain and dried at 70 °C for 12 hr in vacuum oven. To obtain the source/drain contact area, the IL-PVP dielectric layer on source/drain was cleaned off with cotton swab and solvent, acetone or PGMEA. Then the dielectric layer was annealed at 110 °C for 1 hr on hot plate. Finally, the silver (Ag) gate electrodes (thickness: 100 nm) were evaporated on the dielectric layer was annealed at 300 °C for 40 min. After that, same procedure with preparation of the TFT was performed.

Characterization of the capacitance and TFT

The capacitance of the IL-PVP dielectric layer was measured using an Agilent 4284A 1kHz precision LCR meter. The current-voltage (I-V) measurements were performed using an Agilent 4155B semiconductor parameter analyzer. The impedance measurements were taken by an electrochemical analyzer (CHI660E: CH Instruments, Inc.). The elastic modulus was characterized by Nano Indentation System (Nano Indenter XP: MTU). The electrical measurements were performed in ambient environment conditions. The thermal behavior of the IL-PVP dielectric layer was characterized by thermo-gravimetric and differential scanning calorimetry (TG-DSC; Q5000 IR: TA) in air condition. The chemical characteristics of the IL-PVP dielectric layer was measured by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT IR; Nicolet 5700: ThermoFisher). The thickness of the IL-PVP dielectric layers were characterized by surface profiler (Alpha-step IQ: KLA-Tencor). The morphology of the IL-PVP layer and semiconductor layer were investigated by atomic force microscopy (AFM; XE100: PSIA).

2. ATR-FT IR Analysis

Functional groups of cation		Functional groups of anion	
N=C-N stretching vibration	1560-1520 cm ⁻¹	-CF ₃ stretching	1350-1120 cm ⁻¹
ring C=C vibration	1605-1585 cm ⁻¹	asymetric vibration of CF ₃	680-590 cm ⁻¹ 555-505 cm ⁻¹
C-H vibration for cyclic cations	3172-3126 cm ⁻¹	symetric vibration of CF ₃	600-540 cm ⁻¹

 Table S1 Absorption peaks table of ATR FT-IR.

Reference

(1) Socrates G. *Infrared Characteristic Group Frequencies: Tables and Charts*, 3rd Edition, Wiley & Sons: New York, **2004**.

(2) Köddermann, T.; Wertz, C.; Heintz, A.; Ludwig, R. ChemPhysChem 2006, 7, 1944-1949.

(3) Kiefer, J.; Fries, J.; Leipertz, A. Appl. Spectrosc. 2007, 61, 1306-1311.

3. Impedance Analysis

Figure S1 Nyquist plot of polymer insulator depending on frequency

Figure S1 shows a Nyquist plot including calculated capacitance value of each frequency. In this impedance analysis, SUS electrode was used as both working electrode and counter electrode. Frequency range of impedance analysis was $1 \sim 1$ MHz. The area of SUS electrode was 1.76625 cm² and thickness of the IL-PVP layer was 300 μ m. Amplitude of AC voltage was 5 mV and DC bias was not loaded. Since the Nyquist plot correspond to capacitive layer, bulk ionic conductivity of the IL-PVP layer was 49.2 μ S/cm, and interfacial charge transfer conductivity was 0.636 μ S/cm. Considering AC voltage amplitude and thickness of the IL-PVP, the capacitance of Figure 2b could be different from Figure 2a.

4. Nano Indenter Analysis

Figure S3 Nano-indentation analysis results of Load on sample (a), modulus (b), and hardness (c) versus displacement into surface. (scan rate: 10 nm/s, maximum indentation depth : 1000 nm, average result of 4 points).

5. AFM images of the IL-PVP and ZnO layer

Figure S3 AFM images of the IL-PVP on a P^{++} -Si substrate (a), the ZnO on a SiO₂ 200nm substrate (b), the IL-PVP on the ZnO layer which is coated on a SiO₂ 200 nm substrate (c). (scan size: 1 X 1µm).

6. Hysteresis of the ZnO TFTs

Figure S4 Output (a) and Transfer (b) hysteresis curves of the ZnO TFTs with the IL-PVP gate insulator.