Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI) available: [Basic properties of synthesized polyimides]

	$\eta_{\rm inh} \left[{\rm dL}/{\rm g} ight]^{\rm a}$	M_w [dalton] ^b	M_n [dalton] ^c	PDI^{d}
PI Binder	0.32	62500	24600	2.54
PI Substrate	0.91 ^e	_f	-	-

Table S1. Basic properties of the colorless polyimides

^a The inherent viscosity were measured at a polymer concentration of 0.5 g/dL in DMAc at 30 °C; ^b Weight average molecular weight; ^c Number average molecular weight; ^d Polydispersity Index (M_w/M_n) ; ^e The viscosity of the poly(amic acid); ^f Polyimide with outstanding chemical resistance.

Table S2. Solubility behavior of colorless polyimides^a

	NMP	DMAc	DMF	DMSO	<i>m</i> -Cresol	THF	CHCl ₃
PI Binder	++	++	++	++	+	++	+ -
PI Substrate	_		—	—	—	_	_

^a Qualitative solubility tested with 10 mg of a sample in 1 mL of solvent. ++, soluble at room temperature; +, soluble on heating; +-, partially soluble or swelling; -, insoluble even on heating.

Table S3. Optical properties of colorless polyimides

	Color coordinate ^a			T [%] ^b	T [%] ^b	
	b*	a*	L*	450 nm	550 nm	Λ ₀ [70]
PI Binder	0.89	-0.05	94.46	90.2	90.8	276
PI Substrate	1.91	-0.19	93.94	83.8	86.1	371

^a The CIE 1976 (L*, a*, b*) color space (or CIELAB); ^b Transmittance at 450 and 550 nm measured by UV-vis with the thickness of film about 20 μ m; ^c Cutoff wavelength.

Table S4. Thermal properties of colorless polyimides

	Tg	CTE	$T_d^{5}[^{o}C]^{c}$		p rocud
	$[^{o}C]^{a}$	$[ppm/{}^{o}C]^{b}$	N ₂	N ₂ Air	
PI Binder	347	81	480	460	22.8
PI Substrate	326	8	490	450	14.8

^a Glass transition temperature measured by TMA with a constant applied load of 10 mN at a heating rate of 10 °C/min by film/fiber mode in nitrogen; ^b The coefficient of linear thermal expansion data determined over 50~200 °C range by TMA; ^c Temperature at which 5 % weight loss of decomposition recorded by TGA at a heating rate of 20 °C/min and gas flow rate of 20 cm³/min; ^d Residual weight percentages at 800 °C under nitrogen, also called as char yield.

Fig. S1 The cycling performance test of AgNWs/PI defogging devices by turning on and off (4V) alternatively for 20 cycles (concentration of AgNWs: 320 mg/m²).

Fig. S2 The cross-section morphology of AgNWs/PI observed by optical microscopy.