Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supplementary Material

Fig. S1¹H NMR (CDCl₃, 400 MHz) spectrum of AQ-Cl.

Fig. S2 ESI-MS spectrum of AQ-Cl.

Fig. S3 1 H NMR (CDCl₃, 400 MHz) spectrum of AQ-N.

Fig. S4 ESI-MS spectrum of AQ-N.

Fig. S5¹H NMR (CDCl₃, 400 MHz) spectrum of AQ-Si.

Fig. S6 ESI-MS spectrum of AQ-Si.

Fig. S7. Transmission electron microscopy images of AQ-Fe₃O₄@SiO₂@KCC-1 (a) and (b).

Fig. S8 The particle size histogram from DLS of AQ-Fe₃O₄@SiO₂@KCC-1.

Fig.S9 Benesi-Hildebrand plot (absorbance at 217 nm) of AQ-Fe₃O₄@SiO₂@KCC-1 assuming 1:1 stoichiometry between AQ-Fe₃O₄@SiO₂@KCC-1 and Zn²⁺.

Fig. S10 Fluorescence intensity at 509 nm of **AQ-Fe₃O₄@SiO₂@KCC-1** (0.1 mg/mL) in Tris-HCl solution (10 mM, pH = 7.20) as a function of Zn^{2+} concentration (0-5.0 x 10⁻⁴ M). Excitation at 360 nm.

Fig. S11 Job's plot for determining the stoichiometry of AQ-Fe₃O₄@SiO₂@KCC-1 and Zn²⁺ ions. (The total concentration of AQ-Fe₃O₄@SiO₂@KCC-1 and Zn²⁺ ions was 4 x 10⁻⁵ M) $\lambda_{ex} = 360$ nm and $\lambda_{em} = 509$ nm.

Fig. S12 Variation of fluorescence intensity at 509 nm of **AQ-Fe₃O₄@SiO₂@KCC-1** (0.1 mg/mL) in Tris-HCl solution (10 mM, pH = 7.20) with and without $3.1 \times 10^{-5} \text{ M}$ Zn²⁺ as a function of pH. Excitation at 360 nm.

Fig. S13. Fluorescence spectra of **AQ-Fe₃O₄@SiO₂@KCC-1** (0.1 mg/mL) in Tris-HCl solution (10 mM, pH = 7.20) a) without, and b) with Zn^{2+} (5.0 x 10⁻⁴ M). c) treatment with EDTA (5.0 x 10⁻⁴ M), d) again treatment with Zn^{2+} (5.0 x 10⁻⁴ M) in Tris-HCl solution (10 mM, pH = 7.20). Excitation at 360 nm.

Fig. S14 Freundlich adsorption isotherm plots for Zn^{2+} adsorption onto AQ-Fe₃O₄@SiO₂@KCC-1.

Table S1. Structural properties of Fe₃O₄@SiO₂@KCC-1 and AQ-Fe₃O₄@SiO₂@KCC-1

Samples	$S_{BET} (m^2/g)^a$	$D_{BJH}(nm)^{b}$	$V_t (cm^3/g)^c$
Fe ₃ O ₄ @SiO ₂ @KCC-1	213.07	7.94	0.41
AQ-Fe ₃ O ₄ @SiO ₂ @KCC-1	78.76	7.20	0.15

^aS_{BET}: BET surface area calculated from data at $P/P_0 = 0.06-0.29$. ^bD_{BJH} : the maximum of the Barret-Joyner-Hellenda (BJH) pore size distribution calculated from the desorption branch of the nitrogen isotherm. ^cV_t : total pore volume calculated at P/P_0 at 0.99.

N (%)	C (%)	Н (%)
1.73	8.77	1.032

 Table S2. Elementary analysis of AQ-Fe₃O₄@SiO₂@KCC-1

Adsorption isotherm	parameter	AQ-Fe ₃ O ₄ @SiO ₂ @KCC-1	
		Value of parameter	\mathbb{R}^2
Langmuir	$K_L (L mg^{-1})$	0.02896	0.96566
	$q_m (mg g^{-1})$	157.2327	
Freundlich	$K_F (L g^{-1})$	10.39	0.90598
	n	2.04	

Table S3. The parameters of Langmuir and Freundlich isotherms for Zn^{2+} adsorption onto AQ-Fe₃O₄@SiO₂@KCC-1.