Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting information for:

Aggregation Enhanced Pure Violet Emission of a Spiral *Meta*-Polyfluoreneby Supramolecularcontrol of Excimer Formation

LuyangDu^a, Yueqi Mo^a, LinlinLiu^a*, YuyuPan^b, DehuaHu^a, ZengqiXie^a, Bing Yang^b,

YuguangMa^a*

^aInstitute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of

Luminescent Materials and Devices, South China University of Technology, Guangzhou

510640, China.

^bState Key Laboratory of Supramolecular Structure and Materials, Jilin University,

Changchun, 130012, China.

Table of Contents:

1.	Synthesis and characterization of PsF36	.S2
2.	¹ H NMR spectrum of PsF36	.S3
3.	Fluorescence spectra of PsF27 in mixture solvent	.S4
4.	Fluorescence spectra of PsF36 in mixture solvent	.85
5.	The absorbance at 270 nm and unaggregated fraction	.S6

1.Synthesis and characterization of PsF36

PsF36 was prepared via a typical Suzuki-Miyaurareation.¹ Under an argon atmosphere, 3,6-dibromo-2'-(3,7-dimethyloctyloxy)-9,9'-spirobifluorene (0. 1575 g, 0.25 mmol). 2,7-Bis(4,4,5,5-tetramethyl[1.3.2]dioxaborolan-2-yl)-2'-(3.7dimethyloctyloxy)-9,9'-spirobifluorene (0.181 g, 0.25 mmol), tetrathylammonium hydroxide (25% aqueous solution, 1.1 mL, 1.8 mmol), Pd(OAc)2 (0.5 mg, 0.0022 mmol) and tri(o-tolyl)phosphine (3.25 mg, 0.0106 mmol) were dissolved in a mixture of toluene (0.25 mL) and dioxane (0.05 mL) and heated to 110 °C. After 24 hr, the sticky solution was diluted with 0.5 mL of toluene and 0.1 ml of dioxane. Another two portions of toluene/dioxane (0.5 mL/0.1 mL) were added after 48 hr and 72 hr successively. Pd(OAc)₂ (0.5 mg, 0.0022 mmol) and tri(o-tolyl)phosphine (3.25 mg, 0.0106 mmol) together with 4-methylphenyl boronic acid (30 mg, 22 mmol) was added and the mixture was heated for another 12 hr. Finally, 4-bromotoluene (0.2 mL) was added and heated overnight. After cooling down, the mixture was poured into the mixture of toluene (5 mL) and HCl aqueous solution (10 wt%, 5 mL) and vigorously stirred for 4 hr. The organic phase was washed with deionized water several times, concentrated to 3 mL and poured into 30 mL of methanol. The precipitate was filtered and purified by column chromatography (silica gel, toluene as an eluent). The solvent was removed under reduced pressure, and the crude polymer was dissolved in 3 mL of toluene and reprecipitated twice from 30 mL of methanol to afford 99 mg of PsF36 as a white powder. (yield 42.5 %).¹H NMR (300MHz,CDCl₃,ppm):8.53(s),8.13(d), 7.75(s, 2H), 7.41(d, 2H), 7.33(d, 1H), 7.00(s, 1H), 6.90(d, 1H), 6.81(s, 2H), 6.72(d, 1H), 6.32(dd, 1H), 3.79(s, 2H), 1.60(d, 2H), 1.42(d, 2H), 1.22(d, 3H), 1.04(s, 3H), 0.79(dt, 9H). GPC: Mn 14, 000, Mw 26, 500, PDI 1.9.

2. ¹H NMR spectrum of PsF36

Fig S1 ¹H NMR spectrum of PsF36.

The weak signal around 8.53 ppm should be assigned to 4-proton in low polymerized macrocyclic PsF36 with all cis-conformation. The two main peaks at 8.15 and 8.11 ppm should be corresponding to the *cis-* and *trans-* conformation in linear polymer chain or high polymerized macrocycles, even though it is difficult to determine which is which experimentally. We tend to assign the oneat 8.15ppm to *cis-* conformation and that at 8.11 ppm to trans-conformation, because the torsion angle of *cis-*conformation is 2 degree smaller than that of *trans-*, which would induce a little stronger interaction between 4, 5' protons in *cis-*conformation than the interaction between 4, 2' protons in *trans-*conformation. Based on this hypothesis, the ratio of *cis-*and *trans-*conformation would be 33% and 67% by integral area accounts.

3. Fluorescence spectra of PsF27 in mixture solvent

Fig S2 Fluorescence spectra of PsF27 in THF:H₂O (1.5×10^{-5} M) as a function of H₂O ratio.

The emission spectrum of PsF27 in THF/H₂O mixture solvent has a 10 nm redshift compared with that in dilute good solvent. That is because of an extended chain conjugation length as in the β -phase of *para*-linked polyfluorenes.

4. Fluorescence spectra of PsF36 in mixture solvent

Fig S3 Fluorescence spectra of PsF36 in THF:H₂O (1.5×10^{-5} M) as a function of H₂O ratio.

When the H₂O ratiois 50%, the mixture solvent is transparent enough to obtain creditable fluorescence spectra. But at this concentration of 7.5×10^{-5} M, PsF36 aggregate become opaque when the H₂O ratio higher than 25% which indicates the formation of big aggregate and the creditable PL intensity cannot be recorded. Also the concentration of 7.5×10^{-5} M is too high to obtain absorption spectra.

5. The absorbance at 270 nm and unaggregated fraction

Fig S4.The absorbance at 270 nm, unaggregated fraction (α_{unagg}) respectively as a

function of THF ratio.

Reference

(1) Brookins, R. N.; Schanze, K. S.; Reynolds, J. R.Base-Free Suzuki Polymerization for the Synthesis of Polyfluorenes Functionalized with Carboxylic Acids*Macromolecules*, **2007**, *40*, 3524-3526.