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Figure S1. Comparison of energy levels and HOMO-LUMO gaps in armchair-edged

Cs4H4g with different functional groups.
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Figure S2. a) Bright-field TEM image of green-emitting afGQDs. b) The size distributions
of green-emitting af-GQDs.
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Figure S3. a) CV curves (anodic scan) of afGQDs: blue line, blue-emitting afGQDs;
green line, green-emitting afGQDs; orange-line, orange-emitting afGQDs. The LUMO



levels can be calculated by the following empirical equation: LUMO =—e(E,,, +4.4)eV.

b) Energy level diagram for afGQDs: (i), blue-emitting afGQDs; (ii), green-emitting
afGQDs; (iii), orange-emitting afGQDs. The HOMO levels were determined by
subtracting excitation energy from LUMO energy, where the excitation energy was
estimated by the direct conversion of emission peak into eV.
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Figure S4. C1s (a) and N 1s (b) X-ray photoelectron spectra for afGQDs; blue line: blue-
emitting afGQDs, green line: green-emitting afGQDs, yellow line: yellow-emitting

afGQDs, and orange line: orange-emitting afGQDs. c) The table summarises the C/N



ratios calculated from the atomic concentrations: |, blue-emitting afGQDs; II, green-

emitting afGQDs; Ill, yellow-emitting afGQDs; IV, orange-emitting afGQDs.
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Figure S5. Comparison of FT-IR spectra: (a) green-emitting afGQDs, (b) starting OGSs.
New peaks at 1243, 1617, and 3300-3600 cm™' appeared after the amino-hydrothermal
treatment. These peaks were assigned, respectively, to C-N in-plane, N-H out-of-plane,
and N-H in-plane stretching of the amine groups. Additionally, characteristic amide—
carbonyl (-NH-CO-) stretching vibration was observed at 1650 cm-', which implies the
formation of amide groups through interactions with the carboxylic groups as Lewis

acids.
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Figure S6. XRD pattern from green-emitting afGQDs@CNF-clay film.
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Figure S7. TG-DTA curve with the weight loss and exo-endothermal reaction of the
green-emitting afGQDs@CNF-clay film. Two stages of weight loss were apparent: (i)
substantial weight loss attributable to the release of water molecules adsorbed on the

clay (<100 °C) and (ii) thermal decomposition of the cellulose nanofiber (320 °C).
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Figure S8. Luminescence spectra of blue LED with CNF-clay films without afGQDs

under various forward currents.
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Figure S9. Excitation power dependence of PL intensity for green-emitting
afGQDs@CNF-clay hybrids. The PL measurements were carried out using a 355 nm
Nd:YAG laser and a high-sensitive photomultiplier tube detector at room temperature.
The PL intensity increased linearly as the laser power was below 20 mWcm= and then

showed slight saturation at higher powers.



