

Experimental Section

General Procedures

¹H NMR and ¹³C NMR spectra were measured with a Varian Gemini-400 Varian spectrometer. Mass spectra were recorded on a Finnigan 4021C GC-MS spectrometer. The absorption and photoluminescence spectra were recorded on a Hitachi U-3010 UV-vis spectrophotometer and a Hitachi F-4600 fluorescence spectrophotometer, respectively. The phosphorescence spectrum was measured in 2-MeTHF glass matrix at 77 K using a Hitachi F-4600 fluorescence spectrometer. Cyclic voltammetry was performed on a CHI660E electrochemical analyzer. The electrolytic cell was a conventional three-electrode cell in which a glassy carbon working electrode, a platinum wire auxiliary electrode, and an aqueous saturated calomel electrode (SCE) as the reference electrode were employed. The ferrocene/ferrocenium couple was used as the internal standard. Tetra-n-butylammoniumhexafluorophosphate (TBAPF₆, 0.10 M) was used as the supporting electrolyte and DMF as the solvent, respectively.

Synthesis

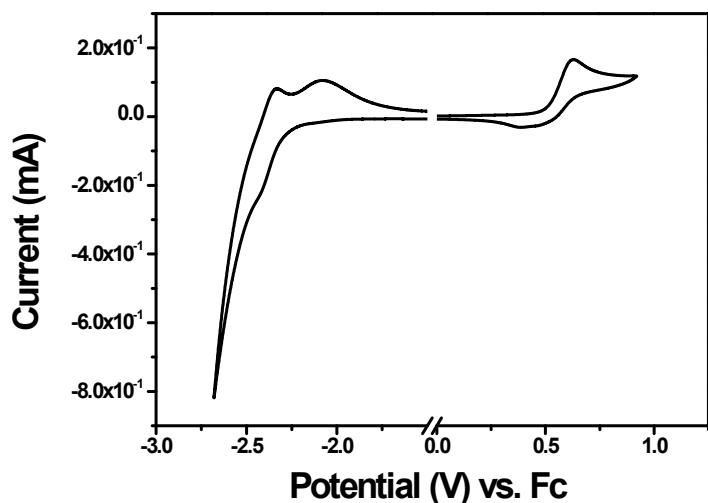
Commercially available reagents and materials were used without further purification. The synthetic route of SOTPA is outlined in Scheme 1.

4-bromo-diphenylsulfide. Diphenylsulfide (3.34 mL, 20 mmol) was dissolved in a mixed solution of CH₂Cl₂ and H₂O (1:1, 150 mL). Then 30% hydrogen peroxide (0.86 mL, 36 mmol) and bromine (1 mL, 20 mmol) were added, and the reaction solution was continuously stirred for 6 h. The resulting mixture was extracted with CH₂Cl₂ with surplus bromine removed by saturated Na₂SO₃ solution. After removing the CH₂Cl₂ solvent, the residue was further purified by silica gel column chromatography (petroleum ether) to give 4.57 g (86%) a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.44 (s, 2H), 7.42 (s, 2H), 7.19 (dd, *J* = 8.2, 2.7 Hz, 5H). EI MS (m/z): 265.94.

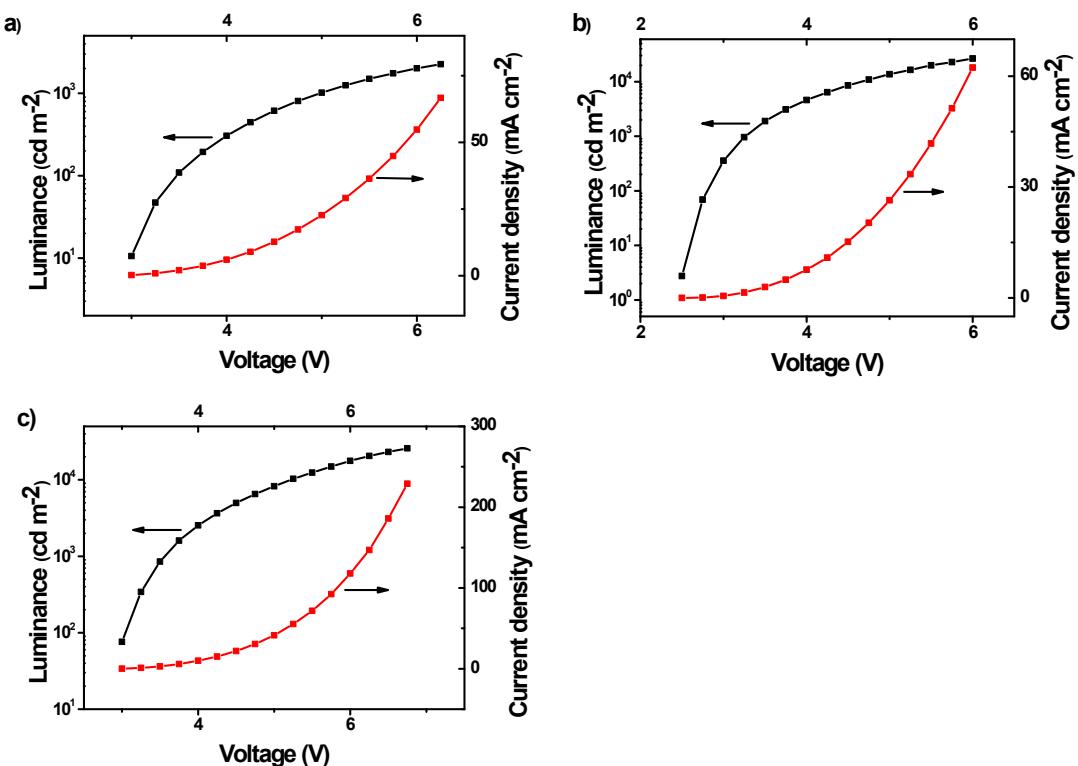
4-bromo-diphenylsulfone. 4-bromo-diphenylsulfide (2.66g, 10mmol), KMnO₄ (8.0 g, 50.6 mmol), and MnSO₄ monohydrater (8.0 g, 47.3 mmol) were stirred continuously in CH₂Cl₂ (75 mL) for 10 h. After that, the reaction mixture was filtered, and the residue was washed with additional CH₂Cl₂. The crude product was obtained by evaporation of the collected CH₂Cl₂ and was further purified via silica gel column chromatography using CH₂Cl₂/petroleum ether (2:1) as the eluent to give 2.45 g (83%) a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 – 7.91 (m, 2H), 7.83 – 7.77 (m, 2H), 7.68 – 7.61 (m, 2H), 7.58 (dd, *J* = 6.0, 3.9 Hz, 1H), 7.55 – 7.48 (m, 2H). EI MS (m/z): 295.95.

4-(4-diphenylaminophenyl)diphenylsulfone (SOTPA). Toluene (22.5 mL), ethanol (7.5 mL), and 2 M aqueous Na₂CO₃ (15 mL) were added to a mixture of 4-bromo-diphenylsulfone (1.48 g, 5 mmol), 4-diphenylaminophenylboronic acid (2.89 g, 10 mmol), and

tetrakis(triphenylphosphine)platinum (585 mg, 0.5 mmol). With stirring, the suspension was heated at 90°C for 24 h under nitrogen atmosphere. When cooled to room temperature, the mixture was extracted with CH₂Cl₂ and dried over Na₂SO₄. After the solvent had been removed, the residue was purified by column chromatography on silica gel using CH₂Cl₂/petroleum ether (3:1) as the eluent to give 1.56 g (73%) a white solid. ¹H NMR (400 MHz, DMSO) δ (ppm) 8.01 – 7.93 (m, 4H), 7.84 (d, *J* = 8.7 Hz, 2H), 7.68 (ddd, *J* = 6.3, 3.7, 1.3 Hz, 1H), 7.66 – 7.59 (m, 4H), 7.37 – 7.29 (m, 4H), 7.14 – 7.03 (m, 6H), 6.99 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 147.38, 145.68, 142.14, 139.52, 133.04, 129.72, 129.44, 129.27, 129.16, 128.27, 128.02, 127.66, 127.17, 125.01, 123.61, 123.05. EI MS (m/z): 461.16.


Quantum Calculation

Theoretical calculation of the compound was carried out using the Gaussian-03 program. Density functional theory (DFT) B3LPY/6-31G (d) was used to determine and optimize the structure


Device Fabrication and Measurement

ITO-coated glasses with a sheet resistance of 30 Ω per square were used as substrates. Before device fabrication, the ITO glass substrates were cleaned with isopropyl alcohol and deionized water, dried in an oven at 120 °C, treated with UV-ozone, and finally transferred to a vacuum deposition system with a base pressure better than 1 × 10⁻⁶ torr for organic and metal deposition. Thermally evaporated organic materials were sequentially deposited at a rate of 1–2 Å s⁻¹ onto the ITO substrates. The cathode was completed by thermal deposition of LiF at a deposition rate of 0.1 Å s⁻¹, and then capped with Al metal deposited at a rate of 10 Å s⁻¹. EL luminescence spectra and CIE color coordinates were measured with a Spectrascan PR650 photometer, and the current-voltage characteristics were measured with a computer-controlled Keithley 2400 SourceMeter under ambient atmosphere. EQE was calculated from the current density, luminance, and EL spectrum, assuming a Lambertian distribution. The emitting area of the device is 0.1 cm².

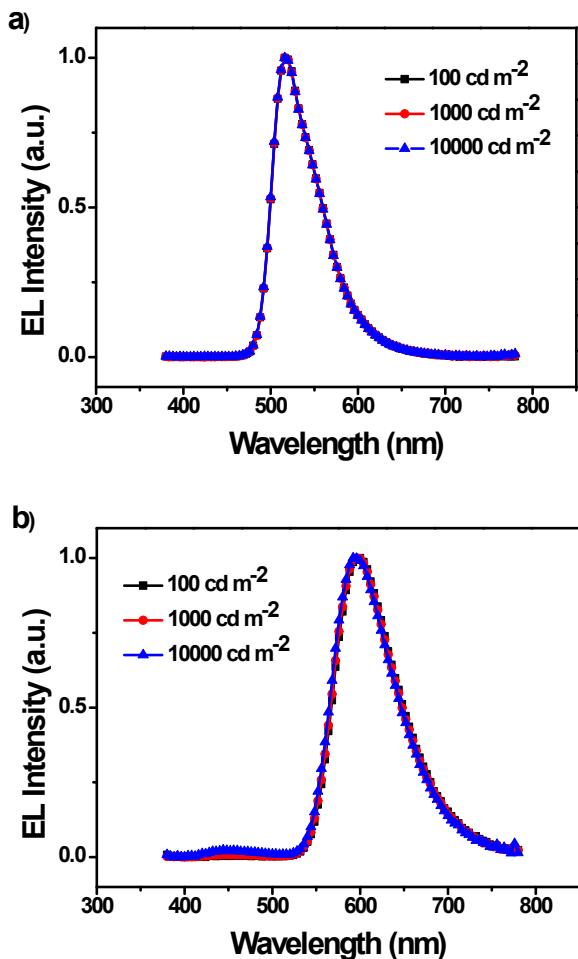

Supporting Information

Figure S1. Cyclic voltammograms of SOTPA in DMF with 0.1 M Bu_4NPF_6 as a supporting electrolyte, saturated calomel electrode (SCE) as a reference electrode, Pt disk as a working electrode, and a scan rate of 100 mV s⁻¹. Fc/Fc⁺ was used as external reference.

Figure S2. Luminance-voltage-current density characteristics of (a) device B, (b) device G and (c) device R.

Figure S3. EL spectra of (a) device G and (b) device R.

Table S1. The CIE coordinates of the SOTPA based single-EML F-P hybrid WOLED (device W).

Luminance	100 cd m^{-2}	1000 cd m^{-2}	10000 cd m^{-2}
CIE(x, y)	(0.46, 0.46)	(0.45, 0.44)	(0.39, 0.39)