Electronic Supplementary Information

Flexible thermistors: pulsed laser induced liquid phase sintering of spinel Mn-Co-Ni oxide films on polyethylene terephthalate sheets

Tomohiko Nakajima* and Tetsuo Tsuchiya

Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

Temperature variations during laser irradiation can be described by the heat diffusion equation simplified to describe one-dimensional heat flow:¹

$$\rho C \frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2} + \alpha I(z, t)$$

where *T* is the temperature function at time *t* and depth *z*, ρ is the mass density, *C* is the specific heat capacity, α is the optical absorption coefficient, κ is the thermal conductivity, and *I*(*z*,*t*) is the laser power density. The laser power *I*(*z*,*t*) is given by:

$$I(z,t) = I_0(t) \cdot (1-r) \cdot \exp(-\alpha z)$$

where *r* is the reflectance. The contribution from the incremental absorbance of the films caused by reflectance at the substrate surface was also included in the laser power distribution. $I_0(t)$ is described as a smooth pulse approximated by:

$$I_{0}(t) = I_{0} \cdot \left(\frac{t}{\tau}\right)^{\beta} \cdot \exp\left(\beta\left(1 - \frac{t}{\tau}\right)\right)$$

where I_0 is the incident pulse power density, τ is the pulse duration (KrF: 26 ns), and β determines the temporal pulse shape (KrF: 6.0). We carried out numerical simulations for the temperature variation

for the excimer laser irradiation process using a difference approximation based on the above equations. The initial conditions were T = 25 °C at t = 0 s and T = 25 °C at the bottom of the substrate. The boundary condition was $\kappa \frac{\partial T}{\partial z} = 0$ at the interfaces. The physical constants used in the calculations are listed in Table S1.

Fig. S1: The thermal conductivity, mass density and heat capacity of air.² The red lines represent the fitting curves.

Table S1 Physical properties used in numerical simulations. ²⁻⁴					
Material	lpha / cm ⁻¹	r	$\kappa / \operatorname{Wcm}^{-1} \mathrm{K}^{-1}$	ho / g cm ⁻³	$C / \operatorname{Jg}^{-1} \operatorname{K}^{-1}$
Mn ₃ O ₄	9.58×10 ⁴	0.191	0.057	4.856	0.624
Air	3.34×10 ⁻⁶	0.00186	1.57-10.5×10 ⁻⁴	0.18-1.98×10 ⁻³	1.009–1.306

The thermal conductivity, mass density and heat capacity of air were obtained by the fitting of data from -100 \sim 1600 °C (Fig. S1).

Figure S2 shows the FESEM image for the MCN film that was irradiated by KrF laser at 55 mJ·cm⁻² for 50 pulses. The small nano-particles on the surface and nano-pores were clearly confirmed. Conversely, such kind of nanostructures was not observed in the MCN film prepared by the MCN dispersion without the MCN-solution (Fig. S3).

Fig. S2: The enlarged view of FESEM image for the MCN film irradiated at 55 mJ-cm $^{-2}$ for 50 pulses.

Fig. S3: The FESEM image for the MCN film coated by using the starting MCN dispersion without the MCN-solution, which irradiated at 55 mJ-cm⁻² for 600 pulses.

Fig. S4: (a) Resistance of MCN-T and MCN-L films before/after resin coating. (b) Schematic illustration for the contribution of resin coat to the electric carrier transport.

Fig. S5: (a) The electrical resistivity calculation model using simple serial-parallel circuit. (b) Randomly produced pores from 0.5–2.5 % in 20 $\mu m \times 20$ $\mu m \times 100$ nm. (c) The calculated electrical resistivity for the MCN layer with/without resin coat.

Fig. S6: Temperature variation of the electrical resistance, *R* (M Ω), for the three MCN films on PET substrates prepared at 55 mJ·cm⁻² for 600 pulses. The solid lines are Arrhenius equation fitting curves.

Figure S4 shows the electrical resistance of MCN-T and MCN-L films before/after the resin coating. The coated resin filled the nano-pores, and they would contribute the resistance reduction. The electrical resistivity of MCN layer with the pores was calculated by using a simple serial-parallel circuit model as shown in Fig. S5a. We assumed the MCN layer with the cuboid size of 20 μ m × 20 μ m × 100 nm, which consisted of 100 nm cube resistive elements. The resistance of each element for MCN, resin (methylcellulose) and pore (air) were 10⁻⁵ Ω , 10⁵ Ω and 10¹¹ Ω , respectively. The pores were produced randomly in the matrix for 0.5–2.5% (Fig. S5b). The calculation showed the difference of

resistivity between the models with/without the resin coat. When the pore density (p) was sufficiently small $(p \le 0.5\%)$, the difference was ignorable. However, it much increased with the increasing p (\approx increasing pore number and size). This would reflect the experimental result as shown in Fig. 4a. Too large p ($p \ge 2.5\%$) caused complete disconnection of conduction pathways (MCN) and the resistivity was calculated to be huge (= insulator).

Fig. S7: The chip thermistor used for the temperature sensing test.

References

- 1 D. Bäuerle,: Laser Processing and Chemistry (Springer-Verlag Berlin Heidelberg New York 2000)
- 2 EngineeringToolBox: http://www.engineeringtoolbox.com/airproperties-d_156.html.
- 3 J. Mucha, B. Vertruyen, H. Misiorek, M. Ausloos, K. Durczewski and Ph. Vanderbemden, J. Appl.. Phys., 2009, **105**, 063501.
- 4 R. A. Robie and B. S. Hemingway, J. Chem. Thermodynamics, 1985, 17, 165.
- 5 Materials Safety Data Sheet Solution Center: http://www.msds.com/.