Sr₂(OH)₃NO₃: the First Nitrate as a Deep UV Nonlinear Optical Material with Large SHG Responses

Ling Huang,^{a,b} Guohong Zou,*^a Huaqiang Cai,^a Shichao Wang,^c Chensheng Lin^c and Ning Ye*^c

^aInstitute of Chemical Materials and Advanced Materials Research Center, Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang, 621900, P. R. China.

^bSi Chuan Research Center of New Materials, Chengdu, 610000, P. R. China.

^cFujian Institute of Research on the Structure of Matter, Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.

CONTENTS

Table S1. Crystal Data and Structure Refinement for Sr₂(OH)₃NO₃.

Table S2. Selected Bond lengths (Å) and angles (deg) for Sr₂(OH)₃NO₃.

Figure S1. Photograph of Sr₂(OH)₃NO₃ crystal.

Figure S2. Experimental and calculated XRD patterns for Sr₂(OH)₃NO₃.

Figure S3. UV absorption spectra and Optical diffuse reflectance spectra of $Sr_2(OH)_3NO_3$.

Figure S4. IR spectrum of Sr₂(OH)₃NO₃.

Figure S5. Calculated band structure of Sr₂(OH)₃NO₃.

Formula	Sr ₂ (OH) ₃ NO ₃
Formula Mass (amu)	288.27
Crystal System	Hexagonal
Space Group	PError!2m
a (Å)	6.6037 (2)
c (Å)	3.55850(10)
$\alpha(^{\circ})$	90
γ(°)	120
$V(Å^3)$	134.392(7)
Z	1
$\rho(\text{calcd}) (\text{g/cm}^3)$	3.562
Temperature (K)	293(2)
$\lambda(\text{\AA})$	1.54184
F(000)	134
μ (mm ⁻¹)	26.04
Final R indices (I> 2σ (I))a R ₁ /wR ₂	0.040/0.104
GOF on F ²	1.24
Absolute Structure Parameter	0.1(2)
${}^{a}R_{1}(F) = \Sigma F_{o} - F_{c} / \Sigma F_{o} $. $wR_{2}(F_{o}^{2}) = [\Sigma w(F_{o}^{2} - \Sigma w)]$	$(F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$.

Table S1. Crystal Data and Structure Refinement for Sr₂(OH)₃NO₃.^a

$Sr1-02^{i}$	2.6259 (13)	Sr1— $Sr1$ ^{vii}	3.8127 (1)
Sr1-02 ⁱⁱ	2.6259 (13)	Sr1—H2	2.8421
Sr1—02 ⁱⁱⁱ	2.6259 (13)	01—N1	1.254 (14)
Sr1-02 ^{iv}	2.6259 (13)	01—Sr1 ^{viii}	2.798 (10)
Sr1-02 ^v	2.6259 (13)	$N1-01^{ix}$	1.254 (14)
Sr1—02	2.6259 (13)	N1-01 ^x	1.254 (14)
Sr1—01	2.798 (10)	02—Sr1 ^{xi}	2.6259 (13)
Sr1—01 ⁱⁱ	2.798 (10)	02—Sr1 ^{vi}	2.6259 (13)
Sr1—01 ⁱⁱⁱ	2.798 (10)	02—Sr1 ^{xii}	2.6259 (13)
Sr1—Sr1 ^v	3.5585	02—H2	0.8193
02 ⁱ —Sr1—02 ⁱⁱ	136.849 (19)	02 ⁱⁱⁱ —Sr1—Sr1 ^{vi}	47.35 (3)
02^{i} —Sr1— 02^{iii}	85.31 (5)	02 ^{iv} —Sr1—Sr1 ^{vi}	132.65 (3)
02 ⁱⁱ —Sr1—02 ⁱⁱⁱ	79.12 (4)	02 ^v —Sr1—Sr1 ^{vi}	132.65 (3)
02^{i} -Sr1- 02^{iv}	79.12 (4)	02—Sr1—Sr1 ^{vi}	47.35 (3)
02^{ii} -Sr1- 02^{iv}	85.31 (5)	01—Sr1—Sr1 ^{vi}	90.0
02^{iii} -Sr1- 02^{iv}	136.849 (19)	01 ⁱⁱ —Sr1—Sr1 ^{vi}	90.000 (1)
02 ⁱ —Sr1—02 ^v	79.12 (4)	01^{iii} —Sr1—Sr1vi	90.000 (1)
02 ⁱⁱ —Sr1—02 ^v	136.849 (19)	Sr1v—Sr1—Sr1vi	180.0
02^{iii} -Sr1- 02^{v}	136.85 (2)	02 ⁱ —Sr1—Sr1 ^{vii}	43.45 (3)
02^{iv} -Sr1-02 ^v	79.12 (4)	02 ⁱⁱ —Sr1—Sr1 ^{vii}	117.7 (2)
02 ⁱ —Sr1—02	136.85 (2)	02 ⁱⁱⁱ —Sr1—Sr1 ^{vii}	43.45 (3)
02 ⁱⁱ —Sr1—02	79.12 (4)	02 ^{iv} —Sr1—Sr1 ^{vii}	117.7 (2)
02 ^v —Sr1—02	85.31 (5)	01—Sr1—Sr1 ^{vii}	72.9 (2)
02 ⁱ —Sr1—01	71.0 (3)	01 ⁱⁱ —Sr1—Sr1 ^{vii}	47.1 (2)
02 ⁱⁱ —Sr1—01	65.9 (3)	01^{iii} Sr1-Sr1vii	167.1 (2)
02 ⁱⁱⁱ —Sr1—01	71.0 (3)	Sr1v—Sr1—Sr1vii	90.0
02 ^{iv} —Sr1—01	65.9 (3)	Sr1 ^{vi} —Sr1—Sr1 ^{vii}	90.0
02 ^v —Sr1—01	137.21 (5)	02 ⁱ —Sr1—H2	120.7
02—Sr1—01	137.21 (5)	02 ⁱⁱ —Sr1—H2	91.4

Table S2. Selected Bond lengths (Å) and angles (deg) for $Sr_2(OH)_3NO_3$.

02 ⁱ —Sr1—01 ⁱⁱ	65.9 (3)	02 ⁱⁱⁱ —Sr1—H2	70.2
02 ⁱⁱ —Sr1—01 ⁱⁱ	137.21 (5)	02 ^{iv} —Sr1—H2	150.7
02 ⁱⁱⁱ —Sr1—01 ⁱⁱ	65.9 (3)	02 ^v —Sr1—H2	83.7
02 ^{iv} —Sr1—01 ⁱⁱ	137.21 (5)	02—Sr1—H2	16.6
02 ^v —Sr1—01 ⁱⁱ	71.0 (3)	01—Sr1—H2	138.0
02—Sr1—01 ⁱⁱ	71.0 (3)	01 ⁱⁱ —Sr1—H2	54.8
01—Sr1—01 ⁱⁱ	120.0	01 ⁱⁱⁱ —Sr1—H2	80.4
02^{i} —Sr1—01 ⁱⁱⁱ	137.21 (5)	Sr1v—Sr1—H2	128.8
02 ⁱⁱ —Sr1—01 ⁱⁱⁱ	71.0 (3)	Sr1 ^{vi} —Sr1—H2	51.2
02 ⁱⁱⁱ —Sr1—01 ⁱⁱⁱ	137.21 (5)	Sr1 ^{vii} —Sr1—H2	89.5
02 ^{iv} —Sr1—01 ⁱⁱⁱ	71.0 (3)	N1-01-Sr1	137.1 (2)
02 ^v —Sr1—01 ⁱⁱⁱ	65.9 (3)	$N1-01-Sr1^{viii}$	137.1 (2)
02—Sr1—01 ⁱⁱⁱ	65.9 (3)	$Sr1-01-Sr1^{viii}$	85.9 (4)
01—Sr1—01 ⁱⁱⁱ	120.0	01 ^{ix} —N1—01	120.000 (1)
01^{ii} Sr1 -01^{iii}	120.0	01^{ix} N1 -01^{x}	120.0
02^{i} —Sr1—Sr1 ^v	47.35 (3)	01—N1—01 ^x	120.0
02 ⁱⁱ —Sr1—Sr1 ^v	132.65 (3)	Sr1 ^{xi} —02—Sr1 ^{vi}	93.10 (6)
01—Sr1—Sr1 ^v	90.0	Sr1-02-Sr1 ^{xii}	93.10 (6)
01 ⁱⁱ —Sr1—Sr1 ^v	90.000 (1)	Sr1 ^{xi} —02—H2	96.7
02^{i} —Sr1—Sr1 ^{vi}	132.65 (3)	Sr1—02—H2	96.8
02 ⁱⁱ —Sr1—Sr1 ^{vi}	47.35 (3)	Sr1 ^{xii} -02-H2	96.7

Symmetry transformations used to generate equivalent atoms: (i)-y+1, x-y, z-1; (ii) -x+y+1, -x+1, z; (iii) -y+1, x-y, z; (iv) -x+y+1, -x+1, z-1; (v) x, y, z-1; (vi) x, y, z+1; (vii) y, x-1, -z; (viii) y+1, x, -z; (ix) -y+1, x-y-1, z; (x) -x+y+2, -x+1, z; (xi) y, x, -z+1; (xii) y, x, -z.

Figure S1. Photograph of $Sr_2(OH)_3NO_3$ crystal.

Figure S2. Experimental and calculated XRD patterns for $Sr_2(OH)_3NO_3$. The black curve is the calculated one, the red is the experimental one.

Figure S3. UV absorption spectra and Optical diffuse reflectance spectra of $Sr_2(OH)_3NO_3$.

Figure S4. IR spectrum of Sr₂(OH)₃NO₃.

Figure S5. Calculated band structure of $Sr_2(OH)_3NO_3$ (the Fermi level is set at 0 eV).