Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.

This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI)

H₂O-Steered Size/Phase Evolution and Magnetic Property of Large-Scale, Monodisperse Fe_xO_y Nanomaterials

Guoxiu Tong,*a Yun Liu,a Tong Wu,b Chaoli Tong, a and Fangfang Dua

^a College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China ^b College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 People's Republic of China

**Corresponding author Tel.:* +86-579-82282269; *Fax:* +86-579-82282269. *E-mail address:* tonggx@zjnu.cn (G.X. Tong).

Fig. S1 The Mössbauer spectra of the sample formed at $\gamma = 0$ %.

Fig. S2 (a) TEM and (b) SEM images of the products obtained at 200 °C with various γ : (a) $\gamma = 0$ % and (b) $\gamma = 12.5$ %.

Fig. S3 XRD pattern of the products obtained at 8 h.

Fig. S4 SEM images of the products obtained at $\gamma = 0\%$ and 200 °C for various reaction time: (a) 1 h, (b) 2 h, (c) 4 h, and (d) 24 h.

Fig. S5 SEM images of the samples obtained at $\gamma = 100\%$ and 200 °C for various reaction time: (a) 1 h, (b) 4 h, (c) 8 h, and (d) 24 h. (e) Particle size distribution as a function of reaction time. (f) XRD pattern of the samples obtained at 1 h.

Fig. S6 SEM images of samples obtained at various temperatures: (a) 120 °C, (b) 180 °C, and (c) 190 °C. (d) Particle size distribution as a function of temperature.

Fig. S7 SEM images of the samples obtained at 160 °C and various Fe^{3+} concentrations: (a and b) 0.03125 M, (c and d) 0.0625 M, and (e and f) 0.21875 M.

Fig. S8 SEM images of samples obtained at various ratios of alkali/Fe³⁺ (200 °C): (a) 2.2, (b) 3.3, and (c) 6.6. (d) Particle size distribution as a function of alkali/Fe³⁺ ratios.

Sample	$M_{ m s}$ /emu·g ⁻¹	$M_{ m r}$ /emu·g ⁻¹	H _c /Oe	Size	Ref.
Fe ₃ O ₄ nanoparticles	84	/	/	12.7 nm	1
Fe ₃ O ₄ nanoparticles	60	/	0.23	15.5 nm	2
Fe ₃ O ₄ nanoparticles	77.2	4.0	27.7	~20 nm	3
Fe ₃ O ₄ colloidal nanocrystal clusters	63.5	/	/	174 nm	4
Bulk Fe ₃ O ₄	~92	/	/	/	5
Fe ₃ O ₄ cubes	89	2	27	350 – 400 nm	6
Fe ₃ O ₄ nanocubes	60.3	/	/	12 nm	7
Fe ₃ O ₄ nanoflowers	82.6	/	10.5	100 nm	8
Fe ₃ O ₄ nanowires	68.7	/	/	35–100 nm in diameter 0.48–2.7 μm in length	9
Fe ₃ O ₄ octahedral particles	90	/	/	About 4 µm	10
Fe ₃ O ₄ octahedral particles	46	4.2	74	100 nm –several micrometers	11
Fe ₃ O ₄ aggregated spheres	42.8	7.0	44	5 nm (for nanocrystals) 100 nm (for spheres)	12
Fe ₃ O ₄ octahedral particles	86.412	1.915	152.2	155.1 nm	This work
Mixture of α -Fe ₂ O ₃ and Fe ₃ O ₄	0.0371	0.00166	1575.28	204 nm for α -Fe ₂ O ₃ 1854.83 nm for Fe ₃ O ₄	This work

Table S1 Saturation magnetization (M_s), remanent magnetization (M_r) and coercivity (H_c) of Fe₃O₄ nanoparticles.

References:

- 1 S. F. Si, C. H. Li, X. Wang, D. P. Yu, Q. Peng, Y. D. Li, Magnetic Monodisperse Fe₃O₄ Nanoparticles. *Cryst. Growth Des.* 2005, 5, 391
- 2 J. Xu, H. B. Yang, W. Y. Fu, K. Du, Y. M. Sui, J. J. Chen, Y. Zeng, M. H. Li, G. T. Zou, Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater. 2007, 309, 307.

- 3 Y. Wang, Q. S. Zhu, L. Tao, Fabrication and growth mechanism of hierarchical porous Fe₃O₄ hollow sub-microspheres and their magnetic properties. *CrystEngComm* **2011**, *13*, 4652
- 4 J. P. Ge, Y. X. Hu, M. Biasini, W. P. Beyermann, Y. D. Yin, Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. *Angew. Chem. Int. Ed.* 2007, 46, 4342.
- 5 D. H. Han, J. P. Wang, H. L. Luo, Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. *J. Magn. Magn. Mater.* **1994**, *136*, 176.
- 6 L. J. Zhao, H. J. Zhang, Y. Xing, S. Y. Song, S. Y. Yu, W. D. Shi, X. M. Guo, J. H. Yang, Y. Q. Lei, F. Cao, Morphology-Controlled Synthesis of Magnetites with Nanoporous Structures and excellent magnetic properties. *Chem. Mater.* **2008**, *20*, 198.
- 7 G. H. Gao, X. H. Liu, R. R. Shi, K. C. Zhou, Y. G. Shi, R. Z. Ma, E. T. Muromachi, G. Z. Qiu, Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe₃O₄ Nanocubes. *Cryst. Growth Des.* 2010, *10*, 2888.
- 8 Z. P. Cheng, X. Z. Chu, H. Zhong, J. Z. Yin, Y. Zhang, J. M. Xu, Synthesis of Fe₃O₄ nanoflowers by a simple and novel solvothermal process. *Mater. Lett.* **2012**, *76*, 90.
- 9 J. Wang, Q. W. Chen, C. Zeng, B. Y. Hou, Magnetic-field-induced growth of single-crystalline Fe₃O₄ nanowires. *Adv. Mater.* 2004, *16*, 137.
- 10 L. J. Zhao, H. J. Zhang, J. K. Tang, S. Y. Song, F. Cao, Fabrication and characterization of uniform Fe₃O₄ octahedral micro-crystals. *Mater. Lett.* **2009**, *63*, 307.
- 11 C. Q. Hu, Z. H. Gao, X. R. Yang, Fabrication and magnetic properties of Fe₃O₄ octahedra. *Chem. Phys. Lett.* **2006**, *429*, 513.
- 12 Y. F. Zhu, W. R. Zhao, H. R.Chen, J. L. Shi, A simple one-pot self-assembly route to nanoporous and monodispersed Fe₃O₄ particles with oriented attachment structure and magnetic property. J. *Phys. Chem. C* 2007, 111, 5281.