Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Single-phase Dual Emissive Cu:CdS/ZnSe Core/Shell
Nanocrystals with "Zero Self-absorption" and Their
Application in White Light Emitting Diodes

ZhuoleiZhang, ^aSiyuanLuan, ^aKekeHuang, ^a Ying Zhang, ^a Zhan Shi, ^aRenguoXie, ^{a,*} and WenshengYang^b

E-mail: renguoxie@jlu.edu.cn

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.

^bState Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China

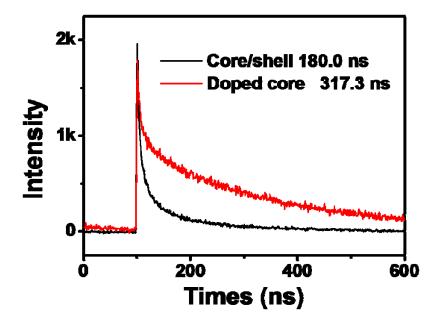


Figure S1. Time-resolved type-II PL and doped PL decay traces of the sample recorded at the emission wavelength of 680 and 520 nm, respectively.

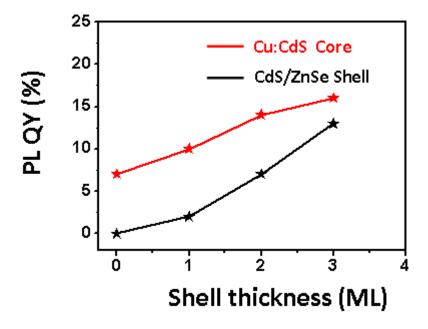


Figure S2. Quantum efficiency of Cu doped CdS/ZnSe NCs with different shell thickness (ZnSe monolayer).