Single Molecule Magnets Grafted on Gold: Magnetic Properties From **Ab Initio Molecular Dynamics. Supporting Information**

Alessandro Lunghi^a, Marcella Iannuzzi^b, Roberta Sessoli^a and Federico Totti^{*a}

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXXX 200X DOI: 10.1039/b000000x

1 **Models Benchmark**

In order to correctly capture the Au(111)-molecule interaction we benchmarked our computational DFT set up. The meta-GGA TPSS functional has been tested over the calculation of Au bulk lattice constant, Au(111) Density of states (DOS) and surface energy convergence over slab's number of layers and finally over the cohesive energy of a benzene molecule physisorbed over Au(111).

Bulk Au 1.1

Au posses an fcc bulk crystalline cell with a lattice constant of 4.08 Å. Using our computational set up (see Section Methods) we studied the energy dependence over different lattice constant values. The model was made by a periodic orthorombic cell of 480 Au atoms. In conclusion TPSS+D3 correctly predicts the experimental lattice constant. 10

Au(111) Surface 1.2

Since the TPSS+D3 functional predicts an Au bulk lattice constant in agreement with the experimental 12 value, we used it also for all surface models. In Fig. 1 are reported the DOS of the Au(111) slab for valous 13 number of layers, calculated with the TPSS functional over the TPSS+D3 optimized structures. Similar 14 description of the electronic structure close to the Fermi Energy is achived by all the models. A little poorer 15 description of the inner states has been evidenced for the 3 layers model, as expected (absence of internal 16 bulk-like layers). 17

In Table 1 are reported the Au(111) surface energy values and their dependence by the number of layers 18 which compose the slab surface model. The surface energy is defined as 19

$$\gamma = \frac{1}{2A} (E_S^N - N_{at} E_B) \tag{1}$$

where A is the surface area, E_S^N stands for the energy of the slab made of N layers, N_{at} is the number 20 of atoms composing the slab and E_B is the bulk energy per atom. While the The E_S^N term was evaluated 21 by direct calculation, E_B was extrapolated with the Fiorentini Method¹ as suggested in the work of Singh-22 Miller et al.². 23

The tested method slightly overestimates the experimental surface energy and an oscillating behavior is 24 registered but it is quite more accurate with respect to bare GGA treatments². In Table 2 are reported the 25

11

1

2

3

4

5

6

7

9

^a Universitá degli Studi di Firenze. Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia 3-13, 50019, Sesto Fiorentino (FI); E-mail: federico.totti@unifi.it

^b Institute of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Fig. 1 Number of layers Au(111) slab DOS dependence.

Table 1 Au(111) Surface Energy

	EXP	3 layer	4 layer	5 layer	6 layer	7 layer	8 layer
TPSS+D3	1.48-1.52	-	1.84	1.86	1.82	1.80	1.84
All values are reported in J/m ² .							

Au(111) inter-layer distances. The dependence by the number of layers which compose the slab surface 26

model is also studied. 27

Table 2 Intelayer Spacing							
	3 layer	4 layer	5 layer	6 layer	7 layer	8 layer	9 layer
d(1-2)	2.52	2.51	2.54	2.51	2.51	2.56	2.51
d(2-3)	2.52	2.40	2.41	2.38	2.40	2.42	2.39
d(3-4)	-	2.51	2.41	2.38	2.39	2.41	2.38
d(4-5)	-	-	2.55	2.38	2.39	2.41	2.39
d(5-6)	-	-	-	2.51	2.40	2.41	2.39

All values are reported in Å.

An accettable inner interlayer distance is observed starting from the 4 layer model which shows a de-28 viation of only about 2% from the 2.35 Å bulk inter-layer distance. Taking into accounts all the data here 29 presented is possible to conclude that the choice of a 4 layer slab is a good compromise between accuracy 30 and system size. 31

Benzene@Au(111) 1.3

One of the main contribution to cohesive energy of physisorbed systems over metallic substrates is the 33 dispersion energy. This particular kind of stabilization energy comes from long-range interactions and it 34 is usually poorly captured by GGA functionals. In order to employ DFT for systems where dispersion 35 forces play a crucial role, a lot of efforts have been done in order to correct such deficiency of current XC-36 functional adding to them a term which explicitly include van der Waals forces. We tested two different 37 kind of vdW corrections: local semi-empirical Grimme's D3³ corrections and non-local vdW-DF2⁴ and 38 rVV10^{5,6} methods. 39

Table 3 Ph@Au(111) Absorption Energies

In Table 3 is possible to observe how the D3 method and the non-local vdW-DF2 method overestimate 40 dispersion forces. The rVV10 vdW functional produces a good agreement with the experimental value. 41 Since the non-local correction are particularly cumbersome from a computational point of view, we decided 42 to utilize the D3 method, which gave reasonable results without additional computational costs. 43

2 Fe₂ Magneto Structural Correlations

A new magneto structural correlation inside μ -hydroxo bridged iron dimer have been examined. We studied 45 the iron dimer $[Fe_2(OMe)(dbm)_2]_2^7$ without phenyl rings as a model (see Fig. 2) to investigate how the 46 isotropic exchange interaction varies along the out of plane angle (ϕ) of the methoxy's carbon with respect 47 to the Fe-O-Fe plane (see Figure 2). 48

Fig. 2 (a): Complete Fe₂ model. (b): ϕ improper angle definition.

In Table 4 are reported the J values obtained with the PBE0 procedure explained in the Methods Section. 49 A clear trend is observed and it supports the hypothesis made in the Results Section. Further calculations 50 would be needed in order to completely characterize such evidence but they are beyond the scope of this 51 work. 52

44

32

1-4 | 3

φ	148.3°	155.5°	162.1°
J	$10.1 {\rm ~cm^{-1}}$	12.1 cm^{-1}	$13.7 \ {\rm cm^{-1}}$

3 Fe Magnetic Moment

As the three Fe_p always posses the same magnetization and it is always found to be only $0.02\mu_B$ higher in absolute value with respect to the magnetic moment of Fe_c , we reported on Table 5 only the variation of the mean absolute value of iron ions' magnetic moments for different computational set up and models. All the walkers magnetic moments show exactly the same behavior and for this reason we only reported the magnetic moments of Walker1. The magnetic moment of iron ions has been monitored during all AIMD runs and it do not sensitively deviates from the values reported on Table 5. These values all refers to calculations done with CP2K software.

	X-Ray	Opt-Bulk	Opt-Isol	Walker1@Au(111)	Walker1@Au(111)
PBE	4.15	4.17	4.16	4.07	4.14
PBE+U	4.36	4.36	4.36	4.35	4.35
PBE0	4.35	4.35	4.35	-	4.34

Table 5 Iron Magnetic Moment

All values are reported in μ_B units.

The PBE functional predicts for all the models a slightly small value of magnetic moment with respect to 61 the PBE0 and PBE+U functionals. This was expected as hybrid and hubbard corrected functionals solve (at 62 least partially) the self interaction energy error and thus they enhance the localization of magnetic orbitals 63 on paramagnetic ions. However, the magnetic moments are below the value of $5\mu_B$ as a consequence of 64 delocalization of the density on ligands. Indeed a value of $\sim 4.4 \mu_B$ is perfectly in line with S=5/2 paramag-65 netic ions. Moreover, this was expected as high spin Fe³⁺ ions in a weak octahedral crystal field are by far 66 more stable than intermediate and low spin counterparts. From Table 5 it could also be noted that while PBE 67 produces a depletion of magnetic moment passing from the Walker1@Au(111) to the Walker1@Au(111) 68 model, the other more accurate functionals do not show the same behavior suggesting an absence of a 69 transfer of magnetic moment from Fe_4C_5 to the surface. 70

71 References

- 1 V. Fiorentini and M. Methfessel, J. Phys.: Condens. Matter, 1996, 8, 6525.
- 73 2 N. E. N. E. Singh-Miller and N. Marzari, *Phys. Rev. B*, 2009, **80**, 1–9.
- ⁷⁴ 3 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, **132**, 154104.
- ⁷⁵ 4 K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist and D. C. Langreth, *Phys. Rev. B*, 2010, **82**, 081101.
- ⁷⁶ 5 O. a. Vydrov and T. Van Voorhis, J. Chem. Phys., 2010, **133**, 244103.
- 77 6 T. Björkman, Phys. Rev. B, 2012, 86, 165109.
- 78 7 F. Le Gall, F. Fabrizi de Biani, A. Caneschi, P. Cinelli, A. Cornia, A. C. Fabretti and D. Gatteschi, Inorg. Chim. Acta, 1997, 262, 123–132.