Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

(3Z,3'Z)-3,3'-(Hydrazine-1,2-diylidene)bis(indolin-2-one) as a new electron-acceptor building block for donor-acceptor π -conjugated polymers for organic thin film transistors

Wei Hong,^a Chang Guo,^{a‡} Bin Sun,^{a‡} and Yuning Li^{*a}

^a Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), 200 University Ave W, Waterloo, Ontario, N2L 3G1, Canada; Fax: +1 519-888-4347; Tel: +1 519-888-4567 ext. 31105; Email: <u>yuning.li@uwaterloo.ca</u>.

Fig. S1 The 300 MHz ¹H NMR spectrum of (3Z,3'Z)-3,3'-(hydrazine-1,2-diylidene)bis(6-bromoindolin-2-one) (**3**) measured in DMSO- d_6 .

Fig. S2 The ¹H NMR (CDCl₃, 300 MHz) spectrum of (3Z,3'Z)-3,3'-(hydrazine-1,2-diylidene)bis(6-bromo-1-(2-octyldodecyl)indolin-2-one) (**4a**).

Fig. S3 The ¹³C NMR (CDCl₃, 75 MHz) spectrum of (3Z,3'Z)-3,3'-(hydrazine-1,2-diylidene)bis(6-bromo-1-(2-octyldodecyl)indolin-2-one) (4a).

Fig. S4 The ¹H NMR (CDCl₃, 300 MHz) spectrum of (3Z,3'Z)-3,3'-(hydrazine-1,2-diylidene)bis(6-bromo-1-(2-decyltetradecyl)indolin-2-one) (**4b**).

Fig. S5 The ¹³C NMR (CDCl₃, 75 MHz) spectrum of (3Z,3'Z)-3,3'-(hydrazine-1,2-diylidene)bis(6-bromo-1-(2-decyltetradecyl)indolin-2-one) (**4b**).

Fig. S6 Normalized UV-Vis absorption spectra of **P1** thin films spin-coated on glass substrates annealed at different temperatures (r.t. is non-annealed). $\lambda_{max} = 702$ nm (room temperature), 701 nm (100 °C), 701 nm (150 °C), and 701 nm (200 °C).

Fig. S7 Normalized UV-Vis absorption spectra of **P2** thin films spin-coated on glass substrates annealed at different temperatures (r.t. is non-annealed). $\lambda_{max} = 701$ nm (room temperature), 701 nm (100 °C), 701 nm (150 °C), and 701 nm (200 °C).

Fig. S8 Cyclic voltammograms (CV) of **P1** and **P2** films measured in 0.1 M tetrabutylammonium hexafluorophosphate in anhydrous acetonitrile at a scan rate of 50 mV s⁻¹ under nitrogen. Ferrocene, which has a HOMO level of -4.8 eV, ^{1,2} was used as a reference.

Fig. S9 Differential scanning calorimetry (DSC) profiles of P1 and P2 measured in nitrogen at a scan rate of 10 °C·min⁻¹.

Fig. S10 Thermogravimetric analysis (TGA) of **P1** and **P2** conducted under nitrogen at a heating rate of 10 °C·min⁻¹.

References

- 1. J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bässler, M. Porsch and J. Daub, Adv. Mater., 1995, 7, 551.
- 2. B. W. D'Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov and M. E. Thompson, Org. Electron., 2005, 6, 11.