Supporting Information

High performance UV light photodetectors bas ed on Sn-nanodots-embedded SnO₂ nanobelts

Yang Huang,^{*a*} Jing Lin,^{*a,b*,*} Liang Li,^{*c*} Lulu Xu,^{*a*} Weijia Wang,^{*a*} Jun Zhang,^{*a*} Xuewen Xu,^{*a*} Jin Zou,^{*b,d*} and Chengchun Tang^{*a*}

^a School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P.R. China.

^b Materials Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.

^c College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, P. R. China.

^dCentre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD 4072, Australia.

.*Corresponding author, Email: dr.linjing@gmail.com (J. L.).

Fig. S1 TEM images of the product. Most of the nanobelts exhibit as pure nanobelts with a chain consisting of nanodots embedded in.

Fig. S2 SEM image and TEM image (inset) of a single Sn-embedded SnO₂ nanobelt, indicating the nanobelt is tipped with a small nanoparticle.

Fig. S3 EDS spectrum collected from the tipped nanoparticle shown in Fig. S1(b), displaying Sn, O and Au exist in the nanoparticle.

Fig. S4 Enlarged rise and decay edges for the "ON" and "OFF" current, respectively.

Fig. S5 *I-V* curves of the device measured under dark conditions in air and 1.0 Pa vacuum condition, respectively. The dark current measured under 1 Pa vacuum condition is \sim 8.4 times higher than that in air at an applied voltage of 10 V.