Supplementary Information for

"Control of Free Volume and Size Exclusion in the Formation of Smectic C Phases for Display Applications"

R. J. Mandle, E. J. Davis, J. P. Sarju, N. Stock, M. S. Cooke, S. A. Lobato, S. J. Cowling and J. W. Goodby
Department of Chemistry, the University of York, Heslington, York, YO10 5DD.

1 Synthesis:

1.2 General Methods.

All chemicals were purchased from Sigma-Aldrich or Apollo Scientific and used as received, without further purification. Solvents were dried by percolation through a column of activated alumina prior to use. NMR spectra were recorded on a JEOL ECX spectrometer operating at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 100.5 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right), 376.4 \mathrm{MHz}\left({ }^{(19} \mathrm{F}\right)$. Silicon NMR spectra were recorded on a JEOL ECS spectrometer operating at 76.4 MHz . One dimensional ${ }^{1} \mathrm{H}$ NOE NMR experiments were performed on a Bruker Avance 500 spectrometer operating at 500 MHz and 400 MHz (pulse program selnogp [$\mathrm{SI} 1-\mathrm{SI} 3$]) at 298 K in CDCl_{3}. Mass spectra were recorded on a Bruker micrOTOF MS-Agilent series 1200LC spectrometer. FTIR spectroscopy was performed using a Shimadzu IR Prestige-21 with Specac Golden Gate diamond ATR IR insert. High-performance liquid chromatography was performed on a Shimadzu Prominence modular HPLC system comprising a LC-20A liquid chromatograph, a DGU-20A degasser, a SIL-20A autosampler, a CBM-20A communication bus, a CTO-20A column oven, and a SPO-20A dual wavelength UV-vis detector. The column used was an Alltech C 18 bonded reverse-phase silica column with a $5 \mu \mathrm{~m}$ pore size, an internal diameter of 10 mm and a length of 250 mm . Polarised optical microscopy was performed on a Zeiss Axioskop 40Pol microscope using a Mettler FP82HT hotstage controlled by a Mettler FP90 central processor. Photomicrographs were captured via an InfinityX-21 MP digital camera mounted atop the microscope. Differential scanning calorimetry was performed on a Mettler DSC822e fitted with an autosampler operating with Mettler Stare software and calibrated before use against an indium standard (onset $=156.55 \pm 0.2$ ${ }^{\circ} \mathrm{C}, \Delta \mathrm{H}=28.45 \pm 0.40 \mathrm{Jg}^{-1}$) under an atmosphere of dry nitrogen. Small angle X -ray diffraction was performed using a Bruker D8 Discover equipped with a temperature controlled, bored graphite rod furnace, custom built at the University of York. Samples were filled into 1 mm capillary tubes and aligned magnetically with a 1 T magnet. Diffraction patterns were collected as a function of temperature and the data processed using Bruker DIFFRAC.SUITE EVA software. Computational studies were performed using Gaussian 09. [SI4]

Experimental

4-Pentyloxybenzoic acid (13)

1-Bromopentane ($25 \mathrm{~g}, 20.5 \mathrm{ml}, 165.5 \mathrm{mmol}$) was added dropwise to a stirred, heated suspension of potassium carbonate ($45 \mathrm{~g}, 330 \mathrm{mmol}$) and methyl 4 -hydroxybenzoate ($22.8 \mathrm{~g}, 150 \mathrm{mmol}$) in acetone (200 ml) under reflux. The solution was stirred for 16 h , filtered and the solvent removed in vacuo. The crude residue was dissolved into diethyl ether (300 ml), which was washed with sodium hydroxide solution ($2 \mathrm{M}, 200 \mathrm{ml}$). The organic layer was dried over MgSO_{4} and dried in vacuo to yield crude methyl 4 -pentyloxybenzoate. The crude methyl 4 pentyloxybenzoate was dissolved into ethanol (120 ml), solid $\mathrm{KOH}(50 \mathrm{~g})$ and water (10 ml) were added and the resulting solution was heated under reflux for 1 h , then cooled to r .t. and diluted with water (250 ml) and filtered. The filtrate was acidified to pH 1 with $36 \% \mathrm{HCl}$, causing the title compound to precipitate as a white solid. The solid was collected by filtration and dried under reduced pressure affording the title compound as a powdery white solid.

Yield: 25.4 g (81\%)
MP: $127^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{DMSO}-\mathrm{D6}$): $0.82\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 1.22-1.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-\left(\underline{\mathrm{CH}_{2}}\right)_{2}-\mathrm{CH}_{2}\right), 1.65(2 \mathrm{H}$,
 Ar), 7.80 (2 H , ddd, $J=2.1, J=2.8, J=8.9$, Ar)

MS m/z (ESI+):231.0988 ($\left.100 \%, \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{3}, \mathrm{M}+\mathrm{Na}\right), 209.1170\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}\right)$

4-(2,4,4-Trimethylpentyloxy)benzoic acid (14)

To a stirred solution of 2,4,4-trimethylpentan-1-ol ($5 \mathrm{~g}, 38.46 \mathrm{mmol}$), triphenyl phosphine ($10.1 \mathrm{~g}, 38.46 \mathrm{mmol}$) and methyl 4-hydroxybenzoate ($5.9 \mathrm{~g}, 38.46 \mathrm{mmol}$) in anhydrous THF (50 ml), under an atmosphere of dry nitrogen, was added neat DIAD $(7.8 \mathrm{~g}, 7.5 \mathrm{ml}, 38.46 \mathrm{mmol})$ dropwise over a period of 0.5 h . The resulting solution was stirred for 16 h , and the solvent removed in vacuo. Ethanol (100 ml) was added to the crude residue and the solution was heated under reflux before the addition of 4 M sodium hydroxide solution (50 ml). The solution was heated under reflux for 16 h , cooled to r.t. and diluted with water (100 ml) and filtered. The filtrate was acidified to pH 1 with $36 \% \mathrm{HCl}$, the resulting precipitate collected by filtration and recrystallised from ethanol giving the title compound as translucent needles.

Yield: 9.0 g (88.6\%)

MP: $106.3^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHZ, Acetone-D6): $0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4, \underline{\mathrm{CH}_{3}}-\mathrm{CH}\right), 1.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.1, \mathrm{~J}=$ 14.0, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}-\mathrm{H}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 1.47\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.7, \mathrm{~J}=14.0,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH} \underline{-}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 1.97-2.07$ (1H, M, ($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 3.81\left(1 \mathrm{H}, \mathrm{dd}, J=7.0, J=9.2, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH}-\mathrm{OAr}\right), 3.90(1 \mathrm{H}, \mathrm{dd}, J=6.1, J=$ $\left.9.2, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH}-\mathrm{HAr}\right), 6.90(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=8.9, \mathrm{Ar}), 7.80(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=8.9, \mathrm{Ar})$.

MS M/Z (ESI+): $273.1462\left(100 \%, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{3}, \mathrm{M}+\mathrm{Na}\right), 251.1650\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}\right)$

IR: 547, 640, 771, 840, 941, 1026, 1118, 1157, 1249, 1296, 1427, 1604, 1674, 2553, 2669, 2826, 2947

4-(3-(Trimethylsilyl)propoxy)benzoic acid (15)

Quantities used: Methyl 4-hydroxybenzoate ($5.5 \mathrm{~g}, 36.36 \mathrm{mmol}$), triphenylphosphine ($7.9 \mathrm{~g}, 30.303 \mathrm{mmol}$), DIAD ($6.1 \mathrm{~g}, 5.9 \mathrm{ml}, 30.303 \mathrm{mmol}$), 3-(trimethylsilyl)propan-1-ol ($4 \mathrm{~g}, 30.303 \mathrm{mmol}$), anhydrous THF (20 ml), then aqueous 4 M sodium hydroxide (50 ml), ethanol $(50 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 13 , giving the title compound as a white powder.

Yield: 7.1 g (93 \%)
MP: $172{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR (400 MHZ , DMSO-D6): $0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{3}\right), 0.58\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{Si}-\mathrm{CH}_{2}\right), 1.66-1.76(2 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.98\left(2 \mathrm{H}, \mathrm{t}, J=6.7, \mathrm{CH}_{2} \mathrm{OAr}\right), 6.98(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=8.9, \mathrm{Ar}), 7.86(2 \mathrm{H}$, ddd, $J=2.1, J=2.8, J=8.9, \operatorname{Ar}), 12.60(1 \mathrm{H}, \mathrm{BrS}, \mathrm{ArCOOH})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, Acetone-D6): -2.49, 12.21, 23.60, 70.64, 114.16, 122.60, 131.69, 163.11, 166.61
${ }^{29}$ Si NMR (79.42 MHz, Acetone-D6): 0.01 (s, (CH3)3 ${ }_{3}$ Si-CH2

MS M/Z (ESI+): $275.1086\left(100 \%, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{SiNaO}_{3}, \mathrm{M}+\mathrm{Na}\right), 253.1258\left(\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{SiO}_{3}, \mathrm{M}+\mathrm{H}\right)$
IR: 547, 640, 694, 771, 833, 894, 956, 995, 1165, 1242, 1288, 1427, 1604, 1666, 2538, 2654, 2800, 2870, 2939

1-Bromo-2,3-difluoro-4-((2,4,4-trimethylpentyl)oxy)benzene (4)
4-Bromo-2,3-difluorophenol ($8 \mathrm{~g}, 38.462 \mathrm{mmol}$), triphenylphosphine ($10 \mathrm{~g}, 38.462 \mathrm{mmol}$) and 2,4,4trimethylpentanol ($5 \mathrm{~g}, 36.462 \mathrm{mmol}$) were dissolved into anhydrous THF (100 ml) before the dropwise addition of DIAD ($7.8 \mathrm{~g}, 7.6 \mathrm{ml}, 38.462 \mathrm{mmol}$). The reaction was followed via TLC and upon complete consumption of the starting materials (1 h) the solvents were removed in vacuo. The title compound was isolated as a straw coloured oil via flash chromatography with $D C M$ as the eluent $(R f=0.95)$.

Yield: 11.4 g (93\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4, \mathrm{CH}_{3}-\mathrm{CH}\right), 1.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.1, \mathrm{~J}=14.0$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 1.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.0, \mathrm{~J}=14.0,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 1.96-2.05(1 \mathrm{H}, \mathrm{M}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3, \mathrm{~J}=8.5, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CHH}-\mathrm{OAr}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.4, \mathrm{~J}=8.5$, $\left.\mathrm{CH}_{3} \mathrm{CH}-\mathrm{CHH}-\mathrm{OAr}\right), 6.61$ (2H, ddd, $J=2.1, J=7.6, J=9.2$, Ar), 7.14 (2H, ddd, $J=2.1, J=7.6, J=9.2$, Ar)
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): 19.86, 29.67, 29.87, 31.01, 47.24, 76.02, 110.31 ($\mathrm{d}, \mathrm{J}=3.1$), $126.30(\mathrm{~d}, \mathrm{~J}=4.6$), 130.43 (d, $J=12.3, J=362.87$), 142.16 ($\mathrm{dd}, J=14.6, J=251.6$), $148.42(\mathrm{dd}, J=3.1, J=8.4), 148.83(\mathrm{dd}, J=$ 14.6, $J=247.0$)
${ }^{19}$ F NMR ($376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -152.72 (ddd, $J=2.3, J=8.0, J=20.7$, Ar-F), -129.21 (ddd, $J=2.3, J=8.0, J=$ 20.7, Ar-F)

MS M/Z (ESI+): $321.0672\left(100 \%, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{OBr}, \mathrm{M}+\mathrm{H}\right)$
IR: 594, 732, 786, 879, 972, 1080, 1219, 1303, 1365, 1465, 1612, 2870, 2954

(3-(4-Bromo-2,3-difluorophenoxy)propyl)trimethylsilane (5)

Quantities used: 4-Bromo-2,3-difluorophenol ($2.4 \mathrm{~g}, 11.364 \mathrm{mmol}$), triphenylphosphine ($2.9 \mathrm{~g}, 11.364 \mathrm{mmol}$), DIAD ($2.3 \mathrm{~g}, 2.3 \mathrm{ml}, 11.364 \mathrm{mmol}$), trimethylsilyl)propan-1-ol ($1.5 \mathrm{~g}, 11.364 \mathrm{mmol}$), THF (60 ml). The experimental procedure was as described in the synthesis of compound 4. The title compound was isolated as a straw coloured oil via flash chromatography with DCM as the eluent $(R f=0.95)$.

Yield: 2.9 g (79 \%)
${ }^{1} \mathrm{H}$ NMR (400 MHZ, CDCl $)_{3}$: $0.00\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 0.53-0.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.71-1.84(2 \mathrm{H}, \mathrm{m}$, $\mathrm{OCH}_{2}-\underline{\mathrm{CH}}_{2}-\mathrm{CH}_{2}$), $3.94\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \underline{\mathrm{CH}_{2} \mathrm{O}}\right), 6.56-6.66(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.16(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHZ, CDCl 3): -1.82, 12.30, 23.67, $72.54,100.34$ ($\mathrm{d}, \mathrm{J}=18.4$), 110.24, 126.26 ($\mathrm{d}, \mathrm{J}=4.6$), 142.00 (dd, $J=16.0, J=250.1), 148.12(\mathrm{dd}, J=2.3, J=8.2), 148.70(\mathrm{dd}, J=12.3, J=247.0)$,
${ }^{19} \mathrm{~F}$ NMR (376.4 MHZ, CDCl 3): -154.77 (1F, dd, $\left.J=6.9, J=19.5, \operatorname{Ar-F}\right),-129.1$ (1F, d, $\left.J=19.5, \operatorname{Ar-F}\right)$
${ }^{29} \mathrm{Si}$ NMR (79.4 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $2.47\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\left.\mathrm{Si}-\mathrm{CH}_{2}\right)}\right.$

MS M/Z (ESI+): $325.0266\left(100 \%, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{OBrSi}, \mathrm{M}+\mathrm{H}\right)$

2',3'-Difluoro-4'-(pentyloxy)-[1,1'-biphenyl]-4-ol (8)

A suspension of (2',3'-difluoro-4'-(pentyloxy)-[1,1'-biphenyl]-4-yl)boronic acid ($4 \mathrm{~g}, 12.5 \mathrm{mmol}$) in diethyl ether (100 ml) was heated under reflux with stirring for 30 minutes, before the addition of 30% hydrogen peroxide (50 ml) in one portion. The suspension rapidly dissolved, giving a golden yellow coloured solution, and the reaction was monitored by TLC until no further consumption of the boronic acid was noted (30 minutes). The biphasic reaction mixture was cooled to ambient temperature before separating and discarding the aqueous layer. The ethereal solution was washed with water ($3 \times 100 \mathrm{ml}$), dried over MgSO_{4} and the solvent removed in vacuo to give a yellow solid. This was subjected to flash chromatography with DCM as the eluent affording the product ($R f$ $=0.35)$ as a white solid.

Yield: 3.4 g (93 \%)

MP: $119.5^{\circ} \mathrm{C}$
 Quintet, $\left.J=7.0, \mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 4.04\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \mathrm{CH}_{2} \mathrm{O}\right), 4.91(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{OH}), 6.74(1 \mathrm{H}, \mathrm{ddd}, J=1.8, J=$ $7.7, J=8.8, \operatorname{Ar}-\mathrm{H}), 6.87(2 \mathrm{H}$, ddd, $J=2.2, J=2.9, J=8.8, \mathrm{Ar}), 7.01$ (1H, td, $J=2.2, J=8.8, \mathrm{Ar}), 7.31(2 \mathrm{H}$, dddd, $J=1.5, J=2.9, J=3.7, J=8.8, \mathrm{Ar})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): 13.97, 22.38, 27.99, 28.83, 69.89, 109.53 ($\mathrm{d}, \mathrm{J}=2.3$), 115.43, 122.59 ($\mathrm{d}, \mathrm{J}=$ 10.7), 123.22 (t, $J=4.6$), 127.55, 130.06 (d, $J=3.1$), 141.72 (dd, $J=15.3, J=247.0), 147.38(\mathrm{dd}, J=3.1, J=$ 8.4), 148.76 (dd, $J=10.7, J=247.8), 155.06$
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl_{3}): -158.76 (1F, ddd, $\left.J=2.3, J=6.9, J=19.5, \operatorname{Ar-F}\right),-142.01(1 \mathrm{~F}, \mathrm{dd}, J=6.9, J=$ 19.5, Ar-F)

MS M/Z (ESI+): $315.1157\left(100 \%, \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NaO}_{2}, \mathrm{M}+\mathrm{Na}\right)$

IR: 501, 617, 732, 810, 894, 972, 1072, 1195, 1249, 1288, 1365, 1612, 2862, 2931, 3433

2',3'-Difluoro-4'-((2,4,4-trimethylpentyl)oxy)-[1,1'-biphenyl]-4-ol (9)

To a stirred, thoroughly degassed suspension of compound $\mathbf{4}(5 \mathrm{~g}, 15.625 \mathrm{mmol})$ in THF (100 ml) and aqueous 2 M sodium carbonate (100 ml) heated under reflux was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(100 \mathrm{mg})$ in one portion. The resulting solution was stirred for 30 minutes before the addition of 4-hydroxybenzeneboronic acid ($2.4 \mathrm{~g}, 17.188 \mathrm{mmol}$) in one portion. The reaction solution was then stirred for a further 14h. The biphasic solution was cooled to ambient temperature and diethyl ether added. The aqueous layer was separated from the organic, acidified with 6M HCl and washed with diethyl ether ($3 \times 50 \mathrm{ml}$) before discarding. The combined ethereal extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to a dark brown oil The target compound was obtained via flash chromatography over silica gel with DCM as the eluent ($R f=0.35$), affording a viscous straw coloured oil. The crude oil was triturated with hot petroleum ether and allowed to cool to ambient temperature, at which point the title compound precipitated out as a white solid and was collected by filtration.

Yield: $4.2 \mathrm{~g}(80 \%)$

MP: $63.2^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}-\left(\mathrm{CH}_{3}\right)_{3}\right)^{3}, 1.09\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1, \mathrm{CH}_{3}-\mathrm{CH}\right), 1.10-1.15\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right.$ $\left.\mathrm{CHH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right) 1.36-1.42\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH} \underline{H}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 1.99-2.10\left(1 \mathrm{H}, \mathrm{M},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}\right), 3.73\left(1 \mathrm{H}, \mathrm{td}, J=7.3, J=8.9, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH}-\mathrm{OAr}\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J=5.8, J=8.9, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH} \underline{H}-\right.$ OAr), 6.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{dd}, J=2.1, J=8.5, \mathrm{Ar}), 6.89(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=3.1, J=8.9, \operatorname{Ar}), 7.03(1 \mathrm{H}, \mathrm{td}, J=2.1, J=$ $8.5, \operatorname{Ar}), 7.38(2 \mathrm{H}, \mathrm{dddd}, J=1.5, J=2.8, J=3.7, J=8.5, \operatorname{Ar})$
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.97, 29.73, 29.93, 31.07, 47.31, 75.98, 109.63 ($\mathrm{d}, \mathrm{J}=3.1$), 115.56, 122.66 (d, J $=10.7), 123.32(\mathrm{t}, \mathrm{J}=3.8), 127.63,130.17(\mathrm{~d}, J=2.3), 141.98(\mathrm{dd}, J=14.6, J=247.0), 147.46(\mathrm{dd}, J=3.1, J=$ $9.2), 148.93$ (dd, $J=14.6, J=247.0$), 155.26
${ }^{19}$ F NMR (376.4 MHz, CDCl3): -158.73 (1F, ddd, $J=2.3, J=8.0, J=19.5$, Ar-F), -142.07 (1F, dd, $J=8.0, J=$ 19.5, Ar-F)

MS M/Z (ESI+): $335.1809\left(100 \%, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{O}_{2}, \mathrm{M}+\mathrm{H}\right)$

IR: 509, 617, 648, 740, 794, 894, 972, 1072, 1195, 1249, 1365, 1465, 1612, 2870, 2954, 3232, 3402

2',3'-Difluoro-4'-(3-(trimethylsilyl)propoxy)-[1,1'-biphenyl]-4-ol (10)

Quantities used: Compound 5 ($2 \mathrm{~g}, 6.1919 \mathrm{mmol}$), 4-hydroxybenzeneboronic acid ($1.272 \mathrm{~g}, 9.2879 \mathrm{mmol}$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(50 \mathrm{mg})$, THF (40 ml), 2M aqueous sodium carbonate (40 ml). The experimental procedure was as described in the preparation of compound 9 . The title compound was purified by flash chromatography with DCM as the eluent $(R f=0.35)$ and recrystalised from petroleum ether $(40-60)$, giving the title compound a white solid.

Yield: 1.7 g (82\%)

MP: $88.5^{\circ} \mathrm{C}$
 $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.99\left(2 \mathrm{H}, \mathrm{t}, J=7.0, \underline{\mathrm{CH}}_{2} \mathrm{OAr}\right), 6.73(1 \mathrm{H}, \mathrm{td}, J=2.1, J=8.9, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=$ 2.8. $J=8.9, \operatorname{Ar}), 7.01$ (1H, ddd, $J=2.1, J=8.2, J=8.9, \operatorname{Ar}), 7.36(2 \mathrm{H}, \mathrm{dddd}, J=1.5, J=3.1, J=3.4, J=8.5, \operatorname{Ar})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): -1.77, 1.00, 12.36, 23.77, 72.48, 109.69 ($\mathrm{d}, \mathrm{J}=3.1$), 115.56, $122.73(\mathrm{~d}, J=11.5)$, $123.39(t, J=3.8), 127.61,130.16(d, J=3.1), 141.98(d d, J=14.6, J=246.3), 147.46(d d, J=3.1, J=8.4)$, 148.89 (dd, $J=10.7, J=247.8), 155.29$
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl 3): -158.79 (1F, dd, $\left.J=6.9, J=25.29, ~ A r-F\right),-142.00(1 \mathrm{~F}, \mathrm{dd}, J=6.9, J=25.29, \operatorname{Ar}-\mathrm{F})$ ${ }^{29} \mathrm{Si}$ NMR (79.4 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $2.50\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3}\right.$ - $\left.-\mathrm{Si}-\mathrm{CH}_{2}\right)$

MS M/Z (ESI+): $359.1264\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NaO}_{2} \mathrm{Si}, \mathrm{M}+\mathrm{Na}\right), 337.1441\left(100 \%, \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Si}, \mathrm{M}+\mathrm{H}\right)$

IR: 524, 617, 694, 748, 833, 1072, 1180, 1242, 1288, 1388, 1442, 1504, 1612, 2885, 2954, 3248

2',3'-Difluoro-4'-(pentyloxy)-[1,1'-biphenyl]-4-yl 4-(pentyloxy)benzoate (16)

Compound 8 ($300 \mathrm{mg}, 1.0274 \mathrm{mmol}$), compound 12 ($228 \mathrm{mg}, 1.0274 \mathrm{mmol}$), EDAC ($294 \mathrm{mg}, 1.5411 \mathrm{mmol}$), DMAP (catalytic) were dissolved into DCM (10 ml), and the resulting solution stirred for 18 h . The solvent was removed in vacuo and the crude residues purified by flash chromatography with DCM as the eluent $(R f=0.9)$ followed by recrystallisation from ethanol, giving the title compound as fine white needles.

Yield: 376 mg (74\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.87\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.32,2 \times \mathrm{CH}_{3}-\mathrm{CH}_{2}\right), 1.27-1.47\left(8 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}\right), 1.76$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}-\underline{\mathrm{CH}}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.97\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.32, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OC}_{6} \mathrm{H}_{4}\right), 4.00\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.32, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{~F}_{2}\right)$, 6.72 (1H, ddd, $J=2.1, J=7.3, J=8.9, \operatorname{Ar}-H), 6.90(2 H, d d d, J=1.8, J=2.8, J=8.9, \operatorname{Ar}), 7.02(1 H, \operatorname{td}, J=2.1, J$ $=8.9, \operatorname{Ar}), 7.19(2 \mathrm{H}, \mathrm{ddd}, J=1.8, J=2.8, J=8.5, \operatorname{Ar}), 7.47(2 \mathrm{H}, \mathrm{dddd}, J=1.2, J=3.1, J=3.4, J=8.5, \mathrm{Ar}), 8.08$ (2H, ddd, $J=1.8, J=2.8, J=8.9, \operatorname{Ar})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): 13.99, 22.40, 22.42, 28.01, 29.11, 28.77, 28.83, 68.30, 69.84, $109.52(\mathrm{~d}, \mathrm{~J}=3.1)$, 114.29, 121.38, 121.92, 122.15 ($d, J=11.5$), $123.55(t, J=4.6), 129.78(d, J=3.1), 132.30,132.42,141.84$ ($d d$, $J=15.3, J=247.8), 147.89(d d, J=3.1, J=8.4), 148.86(\mathrm{dd}, J=11.5, J=247.8), 150.56,163.58,164.91$
${ }^{19}$ F NMR (376.4 MHz, CDCI3): -158.62 (dd, $\left.J=6.9, J=19.5, \operatorname{Ar-F}\right),-141.66(\mathrm{dd}, J=6.9, J=19.5, \operatorname{Ar-F})$

MS M/Z (ESI+): $505.2148\left(100 \%, \mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~F}_{2} \mathrm{NaO}_{4}, \mathrm{M}+\mathrm{Na}\right), 483.2345\left(\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{O}_{4}, \mathrm{M}+\mathrm{H}\right)$

IR: 756, 794, 887, 1018, 1072, 1165, 1211, 1465, 1604, 1720, 1913, 2330 2870, 2954

Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.62\%

2',3'-Difluoro-4'-(pentyloxy)-[1,1'-biphenyl]-4-yl 4-((2,4,4-trimethylpentyl)oxy)benzoate (17)

Quantities used: Compound 8 ($300 \mathrm{mg}, 1.027 \mathrm{mmol}$) compound 14 ($271 \mathrm{mg}, 1.084 \mathrm{mmol}$),, EDAC (294 mg , $1.541 \mathrm{mmol})$, DMAP (catalytic), DCM (2ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent $(R f=0.9)$ and recrystalised from ethanol/acetone (15:1), giving the title compound as white plates.

Yield: 411 mg (76\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.83-0.90\left(12 \mathrm{H}, \mathrm{M}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OAr}+\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.98-1.09\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7, \mathrm{CH}_{3}{ }^{-}\right.$ CH), 1.05 ($1 \mathrm{H}, \mathrm{dd}, J=6.1, J=14.0,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHH}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-$-), $1.27-1.45\left(5 \mathrm{H}, \mathrm{m} \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}+\mathrm{CH} \underline{-}-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.76\left(2 \mathrm{H}\right.$, Quintet, $\left.J=7.0, \mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 1.89-2.01\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{-}-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $\left.7.32, J=8.9,\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\mathrm{CH} \mathrm{HOAr}\right), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J=5.8, J=8.9,\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\mathrm{CH} \underline{H} \mathrm{OAr}\right), 3.98\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7, \mathrm{CH}_{2} \mathrm{O}\right)$, 6.75 ($1 \mathrm{H}, \mathrm{ddd}, J=1.8, J=8.2, J=8.9, \mathrm{Ar}-\mathrm{H}$), $6.89(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=9.2$, Ar), $7.01(1 \mathrm{H}, \mathrm{td}, J=2.4, J$ $=8.5$, Ar), 7.18 ($2 \mathrm{H}, \mathrm{ddd}, J=1.8, J=2.8, J=8.9$, Ar), 7.46 ($2 \mathrm{H}, \mathrm{dddd}, J=1.5, J=3.4, J=5.5, J=8.5, \operatorname{Ar}$), 8.07 (2H, ddd, J=1.8, J=2.8, J = 8.9, Ar)
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 13.97, 19.90, 22.38, 27.99, 28.82, 29.50, 29.84, 30.95, 47.27, 69.81, 73.38, $109.48(\mathrm{~d}, \mathrm{~J}=2.3), 114.31,121.33,121.91,122.12(\mathrm{~d}, \mathrm{~J}=10.7), 123.55(\mathrm{t}, \mathrm{J}=3.8), 129.76(\mathrm{~d}, \mathrm{~J}=2.3), 132.28$, 132.39, 141.81 (dd, $J=14.6, J=247.0), 147.88(d d, J=3.1, J=8.4), 148.85(\mathrm{dd}, J=10.7, J=248.6), 150.55$, 163.67, 164.89
${ }^{19}$ F NMR ($376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - 158.61 ($1 \mathrm{~F}, \mathrm{ddd}, J=2.3, J=5.8, J=19.5, \operatorname{Ar-\underline {-}),-146.65(1F,\operatorname {dd},J=5.8,J=}$ 19.5, Ar-F)

MS M/Z (ESI+): $547.2622\left(100 \%, \mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{NaO}_{4}, \mathrm{M}+\mathrm{Na}\right), 525.2836\left(\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~F}_{2} \mathrm{O}_{4}, \mathrm{M}+\mathrm{H}\right)$
IR: 624, 763, 794, 1018, 1064, 1165, 1249, 1465, 1597, 1720, 1913, 2870, 2954
Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 98.8%

2',3'-Difluoro-4'-(pentyloxy)-[1,1'-biphenyl]-4-yl 4-(3-(trimethylsilyl)propoxy)benzoate (18)

Quantities used: Compound 8 ($300 \mathrm{mg}, 1.027 \mathrm{mmol}$), compound 15 (258 mg, 1.027 mmol), EDAC (294 mg, $1.541 \mathrm{mmol})$, DMAP (catalytic), DCM (5 ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent $(R f=0.9)$ and recrystalised from ethanol/acetone (20:1), giving the title compound as white plates.

Yield: 470 mg (87\%)
${ }^{1} \mathrm{H}$ NMR (400 MHZ, CDCl $)_{3}$: $0.00\left(9 \mathrm{H}, \mathrm{s},\left(\underline{\mathrm{CH}_{3}}\right)_{3} \mathrm{Si}\right), 0.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\underline{\mathrm{CH}}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \underline{\mathrm{CH}_{3}}-\right.$ CH_{2}), 1.31 - $1.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}\right), 1.81\left(2 \mathrm{H}\right.$, Quintet, $\left.J=7.0, \mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.99(2 \mathrm{H}, \mathrm{t}, J=7.0$, $\left.\mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 4.04\left(2 \mathrm{H}, \mathrm{t}, J=7.0, \mathrm{CH}_{2} \mathrm{O}\right), 6.75(1 \mathrm{H}, \mathrm{ddd}, J=1.8, J=7.7, J=8.8, \mathrm{Ar}-\mathrm{H}), 6.83(2 \mathrm{H}$, ddd, $J=2.2, J=2.9, J=8.8, \operatorname{Ar}), 7.05(1 \mathrm{H}, \mathrm{td}, J=2.2, J=8.8, \operatorname{Ar}), 7.23(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=8.9, \operatorname{Ar})$, 7.31 (2H, dddd, $J=1.5, J=2.9, J=3.7, J=8.8, \operatorname{Ar}), 8.11(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=8.9, \operatorname{Ar})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): -1.78, 12.51, 13.97, 22.38, 23.68, 27.99, 28.82, 69.81, 70.90, 109.47 ($\mathrm{d}, \mathrm{J}=3.1$), 114.26, 121.36, 121.91, 122.12 ($d, J=10.7$), $123.54(t, J=4.6), 129.76(d, J=3.1), 123.29,123.39,141.81$ ($d d$, $J=15.3, J=247.0$), $147.90(\mathrm{dd}, J=2.3, J=7.7), 148.84(\mathrm{dd}, J=10.7, J=249.3), 150.54,163.52,164.88$
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl_{3}): -158.62 (1F, ddd, $\left.J=2.3, J=8.0, J=19.5, \operatorname{Ar-F}\right),-141.66(1 \mathrm{~F}, \mathrm{dd}, J=8.0, J=$ 19.5, Ar-F)
${ }^{29} \mathrm{Si}$ NMR (79.4 MHz, $\left.\mathrm{CDCl}_{3}\right): 2.47\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\left.\mathrm{Si}^{-\mathrm{CH}_{2}}\right)}\right.$

MS M/Z (ESI+): $549.2158\left(100 \%, \mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{Na}\right), 527.2398\left(\mathrm{C}_{30} \mathrm{H}_{37}, \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{H}\right)$

IR: 493, 532, 617, 694, 756, 840, 1002, 1064, 1165, 1249, 1396, 1465, 1597, 1728, 2870, 2954

Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.0\%

2',3'-Difluoro-4'-(4-((2,4,4-trimethylpentyl)oxy)-[1,1'-biphenyl]-4-yl 4-(pentyloxy)benzoate (19)

Quantities used: Compound 9 ($200 \mathrm{mg}, 0.5988 \mathrm{mmol}$), compound 13 ($146.2 \mathrm{mg}, 0.6586 \mathrm{mmol}$), EDAC (171.6 $\mathrm{mg}, 0.898 \mathrm{mmol}$), DMAP (catalytic), DCM (5 ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent $(R f=0.95)$ and recrystalised from ethanol, giving the title compound as fine white needles.

Yield: 220 mg (68\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.84-0.91\left(12 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}+\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d} \mathrm{J}=6.7, \mathrm{CH}_{3}-\mathrm{CH}\right), 1.07(1 \mathrm{H}$, dd, $\left.J=6.1, J=14.3,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHH}-\mathrm{CHCH}_{3}-\right), 1.28-1.51\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHH}-\mathrm{CHCH}_{3}-\right)$, 1.76 (2H, Quintet, J=6.7, $\left.\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OAr}\right), 1.93-2.05\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CHCH}_{3}-\right), 3.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $\left.=7.6, J=8.9, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CHHOAr}\right), 3.82\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8, \mathrm{~J}=8.9, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH} \underline{H} \mathrm{OAr}\right), 3.97\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7, \mathrm{CH}_{2} \mathrm{OAr}\right)$, 6.71 ($1 \mathrm{H}, \mathrm{m},, 6.91$ (2H, ddd, $J=1.8, J=2.8, J=8.9, \operatorname{Ar}$), 7.02 ($1 \mathrm{H}, \mathrm{td}, J=2.1, J=8.5, \operatorname{Ar}$) 7.46 ($2 \mathrm{H}, \mathrm{m}, \operatorname{Ar}$), 8.08 (2H, ddd, $J=1.8, J=2.8, J=8.9, ~ A r)$
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.00, 19.87, 22.42, 28.11, 28.77, 29.62, 29.82, 30.98, 47.20, 68.30, 75.80, 109.47 ($\mathrm{d}, \mathrm{J}=2.3$), 114.28, 121.38, 121.92, $121.10(\mathrm{~d}, \mathrm{~J}=10.7$), $123.53(\mathrm{t}, \mathrm{J}=3.8$), $129.78(\mathrm{~d}, \mathrm{~J}=3.1$), 132.23, $132.43,141.81$ (dd, $J=14.6, J=247.0), 148.06(d d, J=2.3, J=7.7), 148.81(\mathrm{dd}, J=10.7, J=248.6), 150.54$, 163.67, 164.92
${ }^{19}$ F NMR ($376.4 \mathrm{MHz}, \mathrm{CDCl3}$): -158.56 (1F, ddd, $\left.J=2.3, J=8.0 \mathrm{~J}=19.5, \operatorname{Ar-F}\right),-141.71$ (1F, dd, $J=8.0, J=$ 19.5, Ar-F)

MS M/Z (ESI+): $547.2625\left(\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~F}_{2} \mathrm{NaO}_{4}, \mathrm{M}+\mathrm{Na}\right), 525.2786\left(100 \%, \mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~F}_{2} \mathrm{O}_{4}, \mathrm{M}+\mathrm{H}\right)$

IR: 524, 617, 756, 794, 887, 1018, 1064, 1172, 1203, 1249, 1311, 1404, 1465, 1604, 1728, 2870, 2939
Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.4\%

2',3'-Difluoro-4'-(3-(trimethylsilyl)propyloxy)-1,1'-biphenyl]-4-yl 4-(pentyloxy)benzoate (20)

Quantities used: Compound 10 ($150 \mathrm{mg}, 0.4464 \mathrm{mmol}$), compound 13 ($208 \mathrm{mg}, 1 \mathrm{mmol}$), EDAC ($191 \mathrm{mg}, 1$ $\mathrm{mmol})$, DMAP (cat), DCM (5 ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent ($R f=0.95$) and recrystalised from ethanol, giving the title compound as colourless plates.

Yield: 230 mg (95\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHZ}, \mathrm{CDCl}_{3}\right): 0.00\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 0.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \mathrm{CH}_{3}-\right.$ CH_{2}), 1.30-1.48 (4H, m, CH $\left.H_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 1.74-1.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.97$ $-4.04\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}-\mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.75(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.8, \mathrm{~J}=7.7, J=9.2, \mathrm{Ar}-\mathrm{H}), 6.93(2 \mathrm{H}$, ddd, $J=1.8, J=2.9, J=8.8, \operatorname{Ar}$, 7.05 ($1 \mathrm{H}, \mathrm{td}, J=1.8, J=8.8, \operatorname{Ar}$) 7.23 ($2 \mathrm{H}, \mathrm{ddd}, J=1.8, J=2.8, J=8.8$, Ar), $7.48-7.54$ (2H, m, Ar), 8.11 (2H, ddd, J=2.2, J=2.6, J = 9.2, Ar)
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - $-1.66,12.47,14.09,22.53,23.88,28.22,28.88,68.41,72.57,109.66(\mathrm{~d}, \mathrm{~J}=3.1$), 114.40, 121.50, 122.03, $122.27(\mathrm{~d}, \mathrm{~J}=10.4), 123.68(\mathrm{t}, \mathrm{J}=4.9), 129.89(\mathrm{~d}, \mathrm{~J}=3.1), 132.40,132.52,141.93$ (dd, $J=14.6, J=246.20), 148.80(\mathrm{dd}, J=3.1, J=11.5), 148.99(\mathrm{dd}, J=11.5, J=246.2), 150.68,163.70,165.00$ ${ }^{19}$ F NMR ($376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -158.6 (1F, dd, $J=8.0, J=19.5$, Ar-F), -141.61 (1F, dd, $J=8.0, J=19.5$, Ar-F) ${ }^{29} \mathrm{Si}$ NMR ($79.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.51\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right) 3 \mathrm{Si}-\mathrm{CH}_{2}\right)$

MS M/Z (ESI+): $549.2249\left(\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~F}_{2} \mathrm{NaO}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{Na}\right), 527.2402\left(100 \%, \mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{H}\right)$
IR: 617, 686, 848, 1010, 1072, 1165, 1249, 1396, 1465, 1604, 1728, 2870, 2954
Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.3%

2',3'-Difluoro-4'-(4-((2,4,4-trimethylpentyl)oxy)-[1,1'-biphenyl]-4-yl $\quad 4-((2,4,4-$ trimethylpentyl)oxy)benzoate (21)

Quantities used: Compound 9 ($200 \mathrm{mg}, 0.5988 \mathrm{mmol}$), compound 14 ($164.7 \mathrm{mg}, 0.6588 \mathrm{mmol}$), EDAC (171.6 $\mathrm{mg}, 0.898 \mathrm{mmol}$), DMAP (catalytic), DCM (5 ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent ($R f=0.95$) and recrystalised from ethanol, giving the title compound as colourless plates.

Yield: 170 mg (51\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$) : $0.87\left(18 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.98-1.11\left(8 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{CH} 3-\mathrm{CH}+2 \mathrm{x}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}-\right.$ $\left.\mathrm{CHCH}_{3}-\right), 1.29-1.38\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH} \underline{-}-\mathrm{CHCH}_{3}-\right), 1.90-2.05\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CHCH}_{3}\right)$), $3.64-$ 3.72 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CHHOAr}$), $3.76-3.86$ ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{CH} 3 \mathrm{CH}-\mathrm{CH}-\mathrm{OAr}$), 6.71 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.8, J=7.6, J=$ 9.2, Ar), 6.90 ($2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=9.2, \operatorname{Ar}), 7.02(1 \mathrm{H}, \mathrm{td}, J=2.4, J=8.5, \operatorname{Ar}) 7.20(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=$ $2.8, J=8.9, \operatorname{Ar}), 7.47(2 \mathrm{H}, \operatorname{dddd}, J=2.1, J=2.8, J=3.4, J=8.9, \operatorname{Ar}), 8.08(2 \mathrm{H}, \operatorname{ddd}, J=2.1, J=2.8, J=9.2$, Ar) ${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.08, 21.13, 30.72, 30.82, 31.03, 31.06, 32.18, 48.40, 48.49, 75.59, 77.00, $110.65(\mathrm{~d}, \mathrm{~J}=2.3), 115.52,122.55,123.13,123.20(\mathrm{~d}, \mathrm{~J}=10.7), 124.72(\mathrm{t}, \mathrm{J}=3.8), 130.99(\mathrm{~d}, \mathrm{~J}=3.1), 133.49$, 133.64, 142.95 (dd, $J=14.6, J=247.0), 149.22(d d, J=2.3, J=7.7), 151.29(d d, J=10.7, J=248.6), 151.71$, 164.84, 166.12
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-158.55$ (1F, dd, $\left.J=8.0, J=19.5, \operatorname{Ar-F}\right),-141.71$ (1F, dd, $J=8.0, J=19.5$, Ar-F)
MS MIZ (ESI+): $589.3093\left(\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{~F}_{2} \mathrm{NaO}_{4}, \mathrm{M}+\mathrm{Na}\right), 567.3263\left(100 \%, \mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~F}_{2} \mathrm{O}_{4}, \mathrm{M}+\mathrm{H}\right)$
IR: 686, 763, 794, 879, 979, 1072, 1165, 1249, 1465, 1604, 1728, 2870, 2954
Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.2\%

2',3'-Difluoro-4'-(3-(trimethylsilyl)propoxy)-[1,1'-biphenyl]-4-yl 4-(3-(trimethylsilyl)propoxy)benzoate (22)
Quantities used: Compound 10 ($150 \mathrm{mg}, 0.4464 \mathrm{mmol}$), compound 15 ($252 \mathrm{mg}, 1 \mathrm{mmol}$), EDAC ($191 \mathrm{mg}, 1$ $\mathrm{mmol})$, DMAP (cat), DCM (5 ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent ($R f=0.95$) and recrystalised from ethanol, giving the title compound as a white solid.

Yield: 190 mg (75\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.00\left(18 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 0.55-0.63\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.72-1.88(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{x}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}\right), 3.94-4.03\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OAr}\right), 6.72-6.79(1 \mathrm{H}, \mathrm{m},, 6.94(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.8, \mathrm{~J}=$ $2.8, J=8.9, \operatorname{Ar}), 7.06(1 \mathrm{H}, \mathrm{td}, J=2.1, J=8.5, \operatorname{Ar}), 7.23(2 \mathrm{H}, \mathrm{ddd}, J=1.8, J=2.9, J=8.8, \operatorname{Ar}), 7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$, 8.12 (2H, ddd, $J=1.8, J=2.8, J=8.8, ~ A r)$,
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -1.65, 12.47, 12.64, 23.81, 23.88, 71.03, 72.57, $109.66(\mathrm{~d}, \mathrm{~J}=3.1), 114.40$, 121.51, 122.03, $122.25(\mathrm{~d}, \mathrm{~J}=10.4), 123.68(\mathrm{t}, \mathrm{J}=4.9), 129.89(\mathrm{~d}, \mathrm{~J}=3.1), 123.42,132.52,141.88(\mathrm{dd}, J=$ $11.5, J=247.2), 148.00(d d, J=3.1, J=11.5), 148.81(d d, J=11.5, J=247.2), 150.68,163.65,165.00$
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-158.60(1 \mathrm{~F}, \mathrm{dd}, J=8.0, J=19.5, \operatorname{Ar-F}),-141.62(1 \mathrm{~F}, \mathrm{dd}, J=8.0, J=19.5$, Ar-F)
${ }^{29} \mathrm{Si} \operatorname{NMR}\left(79.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.47\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{CH}_{2}\right), 2.51\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{CH}_{2}\right)$
MS M/Z (ESI+): $593.2323\left(\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~F}_{2} \mathrm{NaO}_{4} \mathrm{Si}_{2}, \mathrm{M}+\mathrm{Na}\right), 571.2486\left(100 \%, \mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}, \mathrm{M}+\mathrm{H}\right)$

IR: 624.686.756, 840, 1002, 1072, 1157, 1195, 1249, 1465, 1604, 1720, 2877, 2947
Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 98.5%

2',3'-Difluoro-4'-(3-(trimethylsilyl)propoxy)-[1,1'-biphenyl]-4-yl 4-((2,4,4-trimethylpentyl)oxy)benzoate (23)

Quantities used: Compound 10 (150 mg, 0.4464 mmol$)$, compound 14 (250 mg, 1 mmol), EDAC (191 mg, 1 mmol), DMAP (cat), DCM (5 ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent $(R f=0.9)$ and recrystalised from ethanol, giving the title compound as colourless plates.

Yield: 210 mg (80\%)
${ }^{1} \mathrm{H}$ NMR (400 MHZ, CDCl 3): $0.00\left(9 \mathrm{H}, \mathrm{s},\left(\underline{\mathrm{CH}}_{3}\right)_{3} \mathrm{Si}\right), 0.56-0.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\underline{\mathrm{CH}}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s},\left({\left.\underline{\left(\mathrm{CH}_{3}\right.}\right)_{3}-1 .}^{-1}\right.\right.$ $\left.\mathrm{CH}_{2}\right), 1.06\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0, \mathrm{CH}_{2}-\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\mathrm{CH}_{2}\right), 1.08\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.1, \mathrm{~J}=14.3,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHH}-\mathrm{CHCH}_{3}-\right), 1.38(1 \mathrm{H}$, dd, $\left.J=3.7, J=13.9,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH} \underline{H}-\mathrm{CHCH}_{3}-\right), 1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OAr}\right), 1.94-2.05(1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{-}-\mathrm{CH}_{2}-\mathrm{CHCH}_{3}-\right), 3.71\left(1 \mathrm{H}, \mathrm{dd}, J=7.3, J=8.8, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CHHOAr}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, J=5.4, J=8.8, \mathrm{CH}_{3} \mathrm{CH}-\right.$ CHHOAr), $3.99\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \mathrm{CH}_{2} \mathrm{OAr}\right), 6.75(1 \mathrm{H}, \mathrm{m}, 6.92(2 \mathrm{H}, \mathrm{ddd}, J=1.8, J=2.8, J=8.9, \mathrm{Ar}), 7.06(1 \mathrm{H}, \mathrm{td}, J$ $=2.1, J=8.5, \operatorname{Ar}), 7.23(2 H, d d d, J=1.8, J=2.9, J=8.8, \operatorname{Ar}), 7.50(2 H, m, \operatorname{Ar}), 8.11(2 H, d d d, J=1.8, J=2.8, J$ $=8.8, \mathrm{Ar})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): 19.97, 29.73, 29.93, 31.07, 47.31, 75.98, 109.62 ($\mathrm{d}, \mathrm{J}=3.1$), 115.56, , 122.66 (d , $J=10.4), 123.32(\mathrm{t}, J=4.9), 130.17(\mathrm{~d}, J=3.1), 141.98(\mathrm{dd}, J=10.7, J=247.2), 147.65(\mathrm{dd}, J=3.1, J=11.5)$, 148.93 (dd, $J=10.7, J=247.2$), 155.26, 163.70, 165.00
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl $)_{3}$: -158.58 (1F, dd, $\left.J=8.0, J=19.5, \operatorname{Ar-F}\right),-141.60(1 \mathrm{~F}, \mathrm{dd}, J=8.0, J=19.5, \operatorname{Ar}-\mathrm{F})$
${ }^{29} \mathrm{Si}$ NMR (79.4 MHz, CDCl 3): $2.50\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\left.\mathrm{Si}-\mathrm{CH}_{2}\right)}\right.$

MS M/Z (ESI+): $591.2725\left(\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{NaO}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{Na}\right), 569.2883\left(100 \%, \mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{Na}\right)$

IR: 617, 686, 848, 1018, 1072, 1165, 1249, 1465, 1604, 1728, 2870, 2954

Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.4\%

2',3'-Difluoro-4'-((2,4,4-trimethylpentyl)oxy)-[1,1'-biphenyl]-4-yl 4-(3-(trimethylsilyl)propoxy)benzoate (24)

Quantities used: Compound 9 ($200 \mathrm{mg}, 0.5988 \mathrm{mmol}$), compound 14 ($165.9 \mathrm{mg}, 0.6586 \mathrm{mmol}$), EDAC (171.6 $\mathrm{mg}, 0.898 \mathrm{mmol}$), DMAP (catalytic), DCM (5 ml). The experimental procedure was as described in the preparation of compound 16. The title compound was purified by flash chromatography with DCM as the eluent ($R f=0.9$) and recrystalised from ethanol, giving the title compound as white plates.

Yield: 310 mg (91\%)
${ }^{1} \mathrm{H}$ NMR (400 MHZ, CDCl 3): $0.00\left(9 \mathrm{H}, \mathrm{s},\left(\underline{\mathrm{CH}}_{3}\right)_{3} \mathrm{Si}\right), 0.55-0.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\underline{\mathrm{CH}}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(9 \mathrm{H}, \mathrm{s},\left(\underline{\mathrm{CH}}_{3}\right)_{3}-\right.$ $\left.\mathrm{CH}_{2}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7, \mathrm{CH}_{2}-\left(\mathrm{CH}_{3}\right) \mathrm{CH}-\mathrm{CH}_{2}\right), 1.09\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8, \mathrm{~J}=14.0,\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CHH}-\mathrm{CHCH}_{3}-\right), 1.37(1 \mathrm{H}$,
 $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CHCH}_{3}-\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6, \mathrm{~J}=8.2, \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CHHOAr}\right), 3.85\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8, \mathrm{~J}=8.9, \mathrm{CH}_{3} \mathrm{CH}-\right.$ CHHOAr), $3.97\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7, \mathrm{CH}_{2} \mathrm{OAr}\right), 6.74(1 \mathrm{H}, \mathrm{m}, 6.91(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.8, J=2.8, J=8.9, \mathrm{Ar}), 7.05(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ $=2.1, J=8.5, \operatorname{Ar}), 7.24(2 H, d d d, J=1.8, J=2.9, J=8.8, \operatorname{Ar}), 7.51(2 H, m, A r), 8.13(2 H, d d d, J=1.8, J=2.8, J$ $=8.8, \mathrm{Ar})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): -1.65, 12.64, 19.97, 23.81, 29.74, 29.94, 31.07, 47.31, 71.03, 109.59 ($\mathrm{d}, \mathrm{J}=3.4$), 114.40, $121.51122 .02,122.61$ ($\mathrm{d}, \mathrm{J}=10.4$), 123.28 ($\mathrm{t}, \mathrm{J}=4.9$), 129.90 ($\mathrm{d}, J=3.1$), 132.42, 132.55, 141.95 (dd, J $=10.7, J=247.2$), 147.61 (dd, $J=3.4, J=11.5), 148.91(\mathrm{dd}, J=10.7, J=247.2), 150.66,163.65,165.02$
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl_{3}): -158.57 (1F, dd, $\left.J=19.4,6.9, \operatorname{Ar-F}\right),-142.12$ (1F, dd, J=19.4, 6.9, Ar-F)
${ }^{29}$ Si NMR (79.4 MHz, CDCl 3): $2.46\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\left.\mathrm{Si}-\mathrm{CH}_{2}\right)}\right.$

MS M/Z (ESI+): $591.2730\left(\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{NaO}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{Na}\right), 569.2885\left(100 \%, \mathrm{C}_{33} \mathrm{H}_{43} \mathrm{~F}_{2} \mathrm{O}_{4} \mathrm{Si}, \mathrm{M}+\mathrm{H}\right)$

IR: 509, 617, 756, 794, 1018, 1064, 1165, 1203, 1249, 1404, 1465, 1604, 1728, 2870, 2939

Assay (HPLC, C18, 235/260 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.0\%

4-(4,4-Dimethylpentyloxy)-2,3-difluorobromobenzene (26)

Quantities used: 4,4-Dimethylpentanol ($2.3 \mathrm{~g}, 20 \mathrm{mmol}$), 4-bromo-2,3-difluorophenol ($4.2 \mathrm{~g}, 20 \mathrm{mmol}$), Triphenylphosphine ($5.5 \mathrm{~g}, 20 \mathrm{mmol}$), DIAD ($4 \mathrm{~g}, 3.9 \mathrm{ml}, 20 \mathrm{mmol}$), anhydrous THF (40 ml). The experimental procedure was as described in the synthesis of compound 4 . The title compound was isolated as a colourless oil via flash chromatography with DCM as the eluent $(R f=0.95)$.

Yield: g (79 \%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.76\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.01-1.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30-1.40(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.90\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \underline{\mathrm{CH}_{2} \mathrm{O}}\right), 6.50-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.02-7.09(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$
${ }^{19}$ F NMR ($376.4 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): -154.66 ($1 \mathrm{~F}, \mathrm{ddd}, J=2.3 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, J=20.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{F}$), -129.1 (1F, ddd, $J=$ $2.3 \mathrm{~Hz}, \mathrm{~J}=6.9 \mathrm{~Hz}, \mathrm{~J}=20.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{F})$

MS M/Z (ESI+): $308.0197\left[100 \%, \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{OBr}, \mathrm{M}+\mathrm{H}\right]$

4'-((4,4-Dimethylpentyl)oxy)-2',3'-difluoro-[1,1'-biphenyl]-4-ol (27)

Quantities used: Compound 26 ($2 \mathrm{~g}, 6.4 \mathrm{mmol}$), 4-hydroxybenzeneboronic acid ($0.969 \mathrm{~g}, 7.03 \mathrm{mmol}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ $(50 \mathrm{mg})$, THF $(20 \mathrm{ml}), 2 \mathrm{M}$ aqueous sodium carbonate $(20 \mathrm{ml})$. The experimental procedure was as described in the preparation of compound 9 . The title compound was purified by flash chromatography with DCM as the eluent $(R f=0.35)$ and recrystalised from petroleum ether ($40-60$), giving the title compound a white solid.

Yield: 1.4 g (67\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.94\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}\right)$, 1.32-1.37 (2H, m, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$, $1.78-1.88(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OAr}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \underline{\left.\mathrm{CH}_{2} \mathrm{OAr}\right)} 4.98\right.$ (1H, Broad S, Ar-OH$), 6.77(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=2.3, \mathrm{~J}=8.5$, Ar), 6.90 (2 H , ddd, $J=1.8, J=2.8, J=8.5, \operatorname{Ar}$), 7.05 ($1 \mathrm{H}, \operatorname{ddd}, J=2.3, J=8.2, J=8.5$, Ar), 7.40 (2 H , dddd, $J=$ $1.5, J=2.3, J=3.4, J=8.5$, Ar)
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 24.57, 29.28, $30.15,39.86,70.74,109.54(\mathrm{~d}, \mathrm{~J}=2.3$), $115.43,122.61(\mathrm{~d}, \mathrm{~J}=$ 10.7), 123.26 (t, $J=3.8$), 127.55, 130.06 ($d, J=3.1$), 141.86 (dd, $J=14.6, J=247.0$), 147.37 (dd, $J=3.1, J=$ 8.4), 148.68 ($\mathrm{dd}, \mathrm{J}=10.7, \mathrm{~J}=247.8$), 155.07
${ }^{19} \mathrm{~F}$ NMR ($376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -158.74 (1F, dd, $J=6.9, J=19.5$, Ar-F), -141.98 ($1 \mathrm{~F}, \mathrm{dd}, J=6.9, J=19.5$, Ar-F) MS M/Z (ESI+): $345.0787\left(\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NaO}_{2} \mathrm{C}, \mathrm{M}+\mathrm{Na}\right)$

2',3'-Difluoro-4'-(pentyloxy)-[1,1'-biphenyl]-4-yl 4-pentylcyclohexane-1-carboxylate (4)

Quantities used: Compound 8 ($200 \mathrm{mg}, 0.654 \mathrm{mmol}$), 4-pentylcyclohexanecarboxylic acid ($202 \mathrm{mg}, 1 \mathrm{mmol}$), EDAC (191 mg, 1 mmol), DMAP (50 mg), DCM (4 ml). The reaction procedure was as described in the synthesis of compound 16, the title compound was obtained as colourless needles following recrystalisation from ethanol/THF.

Yield: 224 mg (69\%)
${ }^{1} \mathrm{H}$ NMR (400 MHZ, $\left.\mathrm{CDCl}_{3}\right): 0.79-0.97(8 \mathrm{H}, \mathrm{m}), 1.08-1.56(15 \mathrm{H}, \mathrm{m}), 1.71-1.85(4 \mathrm{H}, \mathrm{m}), 2.01-2.11(2 \mathrm{H}, \mathrm{m}$, CyH2 \underline{H}_{2}, $2.41\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=3.2 \mathrm{~Hz}, J=12.2 \mathrm{~Hz}, \mathrm{Cy} \underline{\mathrm{HCOOAr}}\right.$), $3.98\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \operatorname{ArOCH}_{2}\right), 6.70(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=1.8$ $\mathrm{Hz}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} \underline{H}), 6.97(1 \mathrm{H}, \mathrm{td}, J=2.3 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}, \operatorname{Ar} \underline{H}), 7.05(2 \mathrm{H}, \mathrm{ddd}, J=1.8 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}$, Ar프), $7.39-7.44$ (2H, m, $\operatorname{Ar} \underline{H})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): 14.09, 14.19, 22.52, 22.78, 26.63, 28.10, 28.93, 29.10, 32.24, 32.36, 37.01, $37.24,43.74,69.93,109.59(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 121.77,122.21(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}), 123.63(\mathrm{t}, \mathrm{J}=3.8 \mathrm{~Hz}), 129.81(\mathrm{~d}, \mathrm{~J}=$ $2.9 \mathrm{~Hz}), 132.45(\mathrm{~m}), 141.78$ (dd, $J=15.3 \mathrm{~Hz}, J=247.3 \mathrm{~Hz}), 148.01$ (dd, $J=2.9 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}), 148.95(\mathrm{dd}, J=$ $11.5 \mathrm{~Hz}, \mathrm{~J}=249.2 \mathrm{~Hz}$), 150.46, 174.79
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl $)_{3}$: -158.64 (1F, ddd, $\left.J=2.3 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, J=19.5 \mathrm{~Hz}, \mathrm{ArF}\right),-141.72(1 \mathrm{~F}, \mathrm{dd}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, J=19.5 \mathrm{~Hz}, \mathrm{ArF})$

MS M/Z (ESI+): $495.3313\left[100 \%, \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NaF}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right], 473.2798\left[\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~F}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}\right]$

Assay (HPLC, 250/275 nm, 100\% H3CCN): 99.9\%

2',3'-Difluoro-4'-(4,4-dimethylpentyloxy)-[1,1'-biphenyl]-4-yl 4-hexylcyclohexane-1-carboxylate (30)
Quantities used: Compound 27 ($150 \mathrm{mg}, 0.469 \mathrm{mmol}$), 4-pentylcyclohexanecarboxylic acid ($150 \mathrm{mg}, 0.694$ $\mathrm{mmol})$, EDAC ($191 \mathrm{mg}, 1 \mathrm{mmol}$), DMAP (50 mg), DCM (5 ml). The reaction procedure was as described in the synthesis of compound 16, the title compound was obtained as colourless needles following recrystalisation from ethanol.

Yield: 210 mg (86\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.87-1.06(14 \mathrm{H}, \mathrm{m}), 1.18-1.38(14 \mathrm{H}, \mathrm{m}), 1.57(2 \mathrm{H}$, dQuart, $J=3.4, J=13.1$, (Cy) \underline{H}_{2}), $1.77-1.92\left(3 \mathrm{H}, \mathrm{m},(\mathrm{Cy}) \underline{\mathrm{H}_{2}}+(\mathrm{Cy}) \underline{\mathrm{H}}\right), 2.11-2.18\left(2 \mathrm{H}, \mathrm{m},(\mathrm{Cy}) \underline{\mathrm{H}_{2}}\right), 2.47(1 \mathrm{H}, \mathrm{tt}, J=3.4, J=12.2,(\mathrm{Cy}) \underline{\mathrm{H}})$, $4.05\left(2 \mathrm{H}, \mathrm{t}, J=6.7, \operatorname{ArOCH}_{2}\right), 6.76(1 \mathrm{H}, \mathrm{ddd}, J=1.8, J=7.6, J=9.2, \operatorname{Ar} \underline{H}), 7.05(1 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.4, J=$ 8.9, $\operatorname{Ar} \underline{H}), 7.10(2 \mathrm{H}, \operatorname{ddd}, J=2.1, J=2.8, J=8.9, \operatorname{Ar} \underline{H}), 7.49(2 \mathrm{H}, \operatorname{dddd}, J=1.5, J=2.8, J=3.7, J=8.9, \operatorname{Ar} \underline{H})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): 14.22, 22.78, 24.68, 26.99, 29.39, 29.45, 29.99, 31.99, 32.36, 37.01, 37.28, $39.98,43.74,70.76,109.63(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 121.77,122.24(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 123.64(\mathrm{t}, J=3.8 \mathrm{~Hz}), 129.81(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 132.44(\mathrm{~m}), 141.92$ (dd, $J=15.3 \mathrm{~Hz}, J=247.3 \mathrm{~Hz}), 148.00$ (dd, $J=2.9 \mathrm{~Hz}, J=8.6 \mathrm{~Hz}), 148.94$ (dd, $J=$ $11.5 \mathrm{~Hz}, \mathrm{~J}=248.2 \mathrm{~Hz}), 150.46,174.79$
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl_{3}): -158.51 (1F, ddd, $\left.J=2.3, J=8.0, J=19.5, \operatorname{ArF}\right),-141.67(1 \mathrm{~F}, \mathrm{dd}, J=8.0, J=$ 19.5, ArF),

MS M/Z (ESI+): $523.2998\left[100 \%, \mathrm{C}_{31} \mathrm{H}_{42} \mathrm{NaF}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right], 501.3078\left[\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}\right]$

Assay (HPLC, 250/275 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.7\%

2',3'-Difluoro-4'-(3-(trimethylsilyl)propyloxy)-[1,1'-biphenyl]-4-yl 4-pentylcyclohexane-1-carboxylate (31)

Quantities used: Compound 10 ($200 \mathrm{mg}, 0.593 \mathrm{mmol}$), 4-pentlycyclohexanecarboxylic acid ($186 \mathrm{mg}, 1 \mathrm{mmol}$), EDAC ($191 \mathrm{mg}, 1 \mathrm{mmol}$), DMAP (50 mg), DCM (10 ml). The reaction procedure was as described in the synthesis of compound 16 , the title compound was obtained as colourless needles following recrystalisation from ethanol.

Yield: 240 mg (78\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHZ}, \mathrm{CDCl}_{3}$): $0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{Si}-\left(\mathrm{CH}_{3}\right)_{3}\right), 0.55-0.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.86(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.6.7 \mathrm{~Hz}, \mathrm{CyH}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CH}_{3}\right), 0.96\left(2 \mathrm{H}\right.$, dquint, $\left.\mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{~J}=16.5 \mathrm{~Hz}, \mathrm{Cy} \underline{H}_{2}\right), 1.12-1.30(8 \mathrm{H}, \mathrm{m}), 1.48-1.58(2 \mathrm{H}$, dquart, $\left.J=3.2, J=12.8, \mathrm{CH}_{2}\right), 1.76-1.89\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{Cy}_{\mathrm{y}}\right) \mathrm{CH}_{2}\right), 1.91-2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 2.06-2.15(2 \mathrm{H}, \mathrm{m}$, (Cy)CH2), 2.46 (1H, tt, $J=3.7, J=12.4, \mathrm{CyH}$), $3.99\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0, \mathrm{ArOCH}_{2}\right.$), 6.74 (1H, ddd, $J=1.8, J=2.1, J=$ 8.5, $\operatorname{Ar} \underline{H}), 7.03(1 \mathrm{H}, \operatorname{ddd}, J=1.5, J=2.1, J=7.3, \operatorname{Ar} \underline{H}), 7.10(2 \mathrm{H}, \operatorname{ddd}, J=2.1, J=2.8, J=8.9, \operatorname{Ar} \underline{H}), 7.46(2 \mathrm{H}$, dddd, $J=1.5, J=2.1, J=3.4, J=8.5$, ArḦ)
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - $-1.67,1.11,12.46,14.20,22.77,26.62,29.11,32.24,32.35,37.00,37.23,43.74$, 72.54, $109.62(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 121.77,122.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 123.66(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}), 129.81(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, 132.45 (m), 141.90 (dd, $J=15.3 \mathrm{~Hz}, J=247.3 \mathrm{~Hz}), 147.93$ (dd, $J=2.9 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}), 148.84(\mathrm{dd}, J=11.5 \mathrm{~Hz}$, $J=248.2 \mathrm{~Hz}$), 150.45, 174.80
${ }^{19}$ F NMR ($376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - -158.64 (1F, ddd, $\left.J=2.3, J=8.0, J=19.0, \operatorname{ArF}\right),-141.68(1 \mathrm{~F}, \mathrm{dd}, \mathrm{J}=8.0, J=19.0$ ArE)
${ }^{29} \mathrm{Si}$ NMR (79.4 MHz, CDCl $)$: $2.44\left(\mathrm{~s},\left(\mathrm{CH}_{3}\right)_{3} \underline{\mathrm{Si}-\mathrm{CH}_{2}}\right)$

MS M/Z (ESI+): $539.2942\left[100 \%, \mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NaF}_{2} \mathrm{O}_{3} \mathrm{Si}, \mathrm{M}+\mathrm{Na}\right], 516.2921\left[\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{Si}, \mathrm{M}+\mathrm{H}\right]$
Assay (HPLC, 250/275 nm, 100\% H3CCN): 99.6\%

2',3'-Difluoro-4'-(2,4,4-trimethylpentyloxy)-[1,1'-biphenyl]-4-yl 4-butylcyclohexane-1-carboxylate (32)

Quantities used: Compound 9 ($200 \mathrm{mg}, 0.599 \mathrm{mmol}$), 4-pentlycyclohexanecarboxylic acid ($186 \mathrm{mg}, 1 \mathrm{mmol}$), EDAC (191 mg, 1 mmol), DMAP (50 mg), DCM (10 ml). The reaction procedure was as described in the synthesis of compound 16, the title compound was obtained as colourless needles following recrystalisation from ethanol.

Yield: 212 mg (71\%)
${ }^{1} \mathrm{H}$ NMR (400 MHZ, CDCl $)_{3}$): $0.79-1.36(26 \mathrm{H}, \mathrm{m}), 1.43-1.56\left(2 \mathrm{H}\right.$, dquart, $\left.J=3.7, J=14.2, \mathrm{CH}_{2}\right), 1.74-1.86$ (2H, m, (Cy)CH2 \underline{H}_{2}, 1.91 - $2.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 2.02-2.11\left(2 \mathrm{H}, \mathrm{m},(\mathrm{Cy}) \mathrm{CH}_{2}\right), 2.41(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=3.7, \mathrm{~J}=11.9, \mathrm{Cy} \underline{\mathrm{H}})$, 3.66 (1H, dd, $J=7.8, J=9.2, \operatorname{ArOCH} \underline{H}), 3.80(1 \mathrm{H}, \mathrm{dd}, J=6.0, J=9.2, \operatorname{ArOCHH}), 6.67(1 \mathrm{H}, \mathrm{ddd}, J=1.8, J=2.1$, $J=8.5, \operatorname{Ar} \underline{H}), 6.98(1 \mathrm{H}, \operatorname{ddd}, J=1.5, J=1.8, J=7.3, \operatorname{Ar} \underline{H}), 7.05(2 \mathrm{H}, \mathrm{ddd}, J=2.1, J=2.8, J=8.9, \operatorname{Ar} \underline{H}), 7.42(2 \mathrm{H}$, dddd, $J=1.5, J=1.8, J=3.4, J=8.5, \operatorname{Ar} \underline{H})$
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, CDCl_{3}): 14.22, 19.97, 22.78, 26.92, 29.11, 29.71, 29.93, 31.07, 32.00, 32.36, 37.01, $37.29,43.74,47.31,75.89,109.56(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}), 121.77,122.15(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}), 123.59(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}), 129.80$ (d, $J=2.9 \mathrm{~Hz}), 132.48,141.91$ (dd, $J=14.4 \mathrm{~Hz}, J=247.3 \mathrm{~Hz}), 147.68(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 148.19(\mathrm{dd}, J=2.9 \mathrm{~Hz}, J$ $=7.7 \mathrm{~Hz}), 150.14(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}), 150.45,174.77$
${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, CDCl 3): -158.55 (1F, ddd, $\left.J=2.3, J=8.0, J=19.5, \operatorname{ArF}\right),-141.76(1 \mathrm{~F}, \mathrm{dd}, J=8.04, J=19.5$, ArF).

MS M/Z (ESI+): $537.3313\left[100 \%, \mathrm{C}_{32} \mathrm{H}_{44} \mathrm{NaF}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{Na}\right], 515.3220\left[\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~F}_{2} \mathrm{O}_{3}, \mathrm{M}+\mathrm{H}\right]$

Assay (HPLC, 250/275 nm, 100\% $\mathrm{H}_{3} \mathrm{CCN}$): 99.4\%

Supplimental 1D NOE data:

Figure SII: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 9}$, unsaturated.

Figure SI2: ${ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 29 saturated at $491.20 \mathrm{~Hz}, 0.98 \mathrm{ppm}$. The large number of signals results from the saturation of both of the CH_{3} environments (0.95 and 0.90 ppm respectively) in the molecule and thus a large number of NOE enhancements result.

Figure SI3: ${ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound $\mathbf{2 9}$ saturated at $491.20 \mathrm{~Hz}, 0.98 \mathrm{ppm}$. The large number of signals results from the saturation of both of the CH_{3} environments (0.95 and 0.90 ppm respectively) in the molecule and thus a large number of NOE enhancements result.

Figure SI4: ${ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 29 saturated at $722.16 \mathrm{~Hz}, 1.44 \mathrm{ppm}$.

Figure SI5: ${ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 29 saturated at $934.90 \mathrm{~Hz}, 1.87 \mathrm{ppm}$.

Figure SI6: ${ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 29 saturated at $4.08 \mathrm{ppm}(2051.92 \mathrm{~Hz})$, this frequency corresponds to the ArOCH_{2} environment. The numbered black arrows indicate the assigned NOE enhancements, whereas red arrows indicate unobserved NOE enhancements.

Figure SI7: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 0}$, unsaturated.

Figure SI8: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound $\mathbf{3 0}$ saturated at 1.34 ppm .

Figure SI9: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound $\mathbf{3 0}$ saturated at 0.93 ppm .

Figure SI10: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 31, unsaturated.

Figure SI11: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 31 saturated at $3409.32 \mathrm{~Hz}, 6.81 \mathrm{ppm}$

Figure SI12: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 1}$ saturated at $2031.41 \mathrm{~Hz}, 4.06 \mathrm{ppm}$

Figure SI13: ${ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 31 saturated at $323.63 \mathrm{~Hz}, 0.64 \mathrm{ppm}$

Figure SI14: ${ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound $\mathbf{3 1}$ saturated at $34.59 \mathrm{~Hz}, 0.07 \mathrm{ppm}$

Figure SI15: $\quad{ }^{1} \mathrm{H}$ NMR spectrum of compound 32, unsaturated.

Figure SI16: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 32 saturated at $3534.85 \mathrm{~Hz}, 7.06 \mathrm{ppm}$.

Figure SI17: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 32 saturated at $3404.91 \mathrm{~Hz}, 6.77 \mathrm{ppm}$.

Figure SI18: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 32 saturated at $1960.10 \mathrm{~Hz}, 3.88 \mathrm{ppm}$.

Figure SI19: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 32 saturated at $1896.21 \mathrm{~Hz}, 3.76 \mathrm{ppm}$.

Figure SI2O: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound $\mathbf{3 2}$ saturated at $1048.22 \mathrm{~Hz}, 2.06 \mathrm{ppm}$.

Figure SI21: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 32 saturated at $730.96 \mathrm{~Hz}, 1.41 \mathrm{ppm}$.

Figure SI22: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 32 saturated at $571.83 \mathrm{~Hz}, 1.14 \mathrm{ppm}$.

Figure SI23: $\quad{ }^{1} \mathrm{H}$ 1D NOESY NMR spectrum of compound 32 saturated at $493.82 \mathrm{~Hz}, 0.955 \mathrm{ppm}$.

Supplemental DSC data

Figure SI24: DSC trace $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1}\right)$ for compound 16.

Figure SI25: DSC trace $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1}\right)$ for compound 17.

Figure SI26: DSC trace $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1}\right)$ for compound 18.

Figure SI27: DSC trace ($10^{\circ} \mathrm{C} \mathrm{min}^{-1}$) for compound 19.

Figure SI28: DSC trace ($10^{\circ} \mathrm{C} \mathrm{min}^{-1}$) for compound 20.

Figure SI29: DSC trace ($10^{\circ} \mathrm{C} \mathrm{min}^{-1}$) for compound 21.

Figure SI30: DSC trace $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1}\right)$ for compound 22.

Figure SI31: DSC trace ($10^{\circ} \mathrm{C} \mathrm{min}^{-1}$) for compound 23.

Figure SI32: DSC trace $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1}\right)$ for compound 24.

Supplementary Information References

SI1. H. Kessler, H. Oschkinat, C. Griesinger and W. Bermel, J. Magn. Reson., 1986, 70, 106
SI2. J. Stonehouse, P. Adell, J. Keeler and A.J. Shaka, JACS, 1994, 116, 6037
SI3. K. Stott, J. Stonehouse, J. Keeler, T.L. Hwang and A.J. Shaka, JACS, 1995, 117, 4199-4200
SI4. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

