Electrical Property Enhancement of Electrically Conductive Adhesives Through Ag-coated-Cu Surface Treatment by Terephthalaldehyde and Iodine

Chaowei Li ^{a,b}, Xike Gong ^a, Lei Tang ^{a,b}, Kai Zhang ^a, Jie Luo ^a, Lin Ling ^a, Jun Pu ^a, Taotao Li ^a, Mingxing Li ^b, Yagang Yao ^{a*}

^a Division of Advanced Nanomaterials, Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Suzhou 215123, China

b Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China

Corresponding Authors

*Y.Y.: e-mail: <u>ygyao2013@sinano.ac.cn</u>

Figure S1. (a) Bulk resistivity of ECAs with TPTA and I_2 (30/1 mole ratio) treated Ag-coated-Cu flakes with different treatment time; (b) Bulk resistivity of ECAs with TPTA and I_2 (30/1 mole ratio) treated Ag-coated-Cu flakes with different I_2 amount.

Figure S2. DSC of Ag-coated-Cu based ECA and epoxy 828.

Figure S3. Raman spectrum of Ag-coated-Cu flakes treated by different mole ratio of $TPTA/I_2$.

Figure S4. TPTA and I_2 modified Ag-coated-Cu flakes were treated at different temperatures (a) at 150 °C for 1 h; (b) at 160 °C for 1 h; (c) at 170 °C for 1 h; and (d) at 180 °C for 1 h. It is obvious that the Ag nanoparticles begin to sinter at 180 °C.