SUPPORTING INFORMAITON

[3 + 3] Imine and β-Ketoenamine Tethered Fluorescent Covalent-Organic Frameworks for CO₂ Uptake and Nitroaromatic Sensing

D. Kaleeswaran[‡], Pratap Vishnoi[‡], and Ramaswamy Murugavel*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India-400 076. E-mail: <u>rmv@chem.iitb.ac.in</u> Tel: +91 22 2576 7163

Figure S2. ¹³C NMR spectrum of *i*PrTAPB-NPh₂ in CDCl₃.

Figure S3. FT-IR spectrum of *i*PrTAPB-NPh₂. (KBr disc).

Figure S4. ESI-MS spectrum of *i*PrTAPB-NPh₂.

Figure S5. ¹H NMR spectrum of *i*PrTAPB in CDCl₃.

160 150 140 150 120 110 100 90 80 70 80 50 40 50 20 10

Figure S6. ¹³C NMR spectrum of *i*PrTAPB in CDCl₃.

Figure S7. FT-IR spectrum of *i*PrTAPB (KBr disc).

Figure S8. ESI-MS spectrum of *i*PrTAPB.

Figure S9. ¹H NMR spectrum of TAPB-Benz in CDCl₃.

Figure S10. ¹³C NMR spectrum of TAPB-Benz in CDCl₃.

Figure S11. FT-IR spectrum of TAPB-Benz (KBr disc).

Figure S12. ESI-MS spectrum of TAPB-Benz.

Figure S13. FT-IR spectrum of TAPB-TFPB (KBr disc).

Figure S14. FT-IR spectrum of *i*PrTAPB-TFPB (KBr disc).

Figure S15. FT-IR spectrum of TAPB-TFP (KBr disc).

Figure S16. FT-IR spectrum of *i*PrTAPB-TFP (KBr disc).

Figure S17. Packing diagram of crystal structure of *i*PrTAPB based on Van der Waals radii of atoms.

Figure S18.TGA profiles of TAPB-TFPB, TAPB-TFP, *i*PrTAPB-TFPB and *i*PrTAPB-TFP (N_2 atm, 10 °C/min).

Compounds	CO ₂ uptake (cc/g)	CO ₂ uptake (mmol/g)	CO ₂ uptake (mg/g)	CO ₂ uptake (wt %)	Reference
				, ,	
TAPB-TFP	91.6	4.09	180	18.0	This work
<i>i</i> PrTAPB-TFP	53.5	2.39	105.2	10.52	This work
BFCMP-2	62.0	2.77	122	12.2	1
PBILP	61.8	2.76	121	12.1	2
BILP-10	90.0	4.02	177	17.7	3
BILP-11	69.2	3.09	136	13.6	3
BILP-13	57.5	2.57	113	11.3	3
TB-MOP	86.0	3.84	169	16.9	4
TB-MOP-Ru	64.5	2.88	127	12.7	4
Azo-POF-1	66.7	2.98	131	13.1	5
COP-93	71.2	3.18	140	14.0	6
BILP-5	65.0	2.9	128	12.8	7
TBILP-1	59.4	2.65	117	11.7	8
TCMP-0	53.3	2.38	105	10.5	9
PCTF-1	73.7	3.29	145	14.5	10
TPI-1	54.4	2.43	107	10.7	11
PPF-1	135.7	6.06	267	26.7	11
PPF-2	124.1	5.54	244	24.4	11
PPF-4	58.0	2.59	114	11.4	12
TpPa-1	78.0	3.48	153.1	15.3	13
TpPa-2	64.0	2.85	125.4	12.5	13
РРТВС	65.6	2.93	128.9	12.9	14

Table S1. Comparison of CO_2 uptake at 273 K and 1 bar

Figure S19. UV-Vis and emission spectra of *i*PrTAPB-NPh₂ and *i*PrTAPB, (a) UV-Vis spectrum of compound *i*PrTAPB-NPh₂ in acetonitrile (8.0 μ M); $\lambda_{max} = 202$ ($\epsilon = 1.32 \times 10^5$ M cm⁻¹), 285 ($\epsilon = 9 \times 10^4$ M cm⁻¹), 360 ($\epsilon = 5 \times 10^3$ M cm⁻¹) nm; (b) UV-Vis spectrum of compound *i*PrTAPB in acetonitrile (10 μ M); $\lambda_{max} = 214$ ($\epsilon = 9.6 \times 10^4$ M cm⁻¹), 293 ($\epsilon = 7.8 \times 10^4$ M cm⁻¹), and emission spectrum of *i*PrTAPB in acetonitrile (4.0 μ M); $\lambda_{ex} = 293$ nm.

Figure S20. Normalized UV-vis spectrum of TFPB acetonitrile suspension.

Figure S21. Normalized UV-vis spectrum of TFP acetonitrile solution $(1 \times 10^{-5} \text{ M})$.

Figure S22. Normalized UV-vis spectrum of TAPB-TFPB acetonitrile suspension.

Figure S23. Normalized UV-vis spectrum of TAPB-TFP acetonitrile suspension.

Figure S24. Normalized UV-vis spectrum of *i*PrTAPB-TFP acetonitrile suspension.

Figure S25. Normalized UV-vis spectrum of *i*PrTAPB-TFPB acetonitrile suspension.

Figure S26. Fluorescence quenching profiles of compound TAPB-TFPB with different PNAC analytes in acetonitrile suspension ($\lambda_{ex} = 285 \text{ nm}$).

 Table S2. Details of quenching efficiencies for TAPB-TFPB with

Analyte(s)	% Quenching	K _{SV} (M ⁻¹)
РА	80	5.9×10^{4}
DNT	36	$8.7 imes 10^3$
<i>m</i> -DNB	19	3.3×10^{3}
<i>p</i> -DNB	31	7.6×10^{3}

different PNAC analytes (13 ppm each).

Figure S27. Fluorescence quenching of TAPB-TFP with a) PA; b) DNT; c) *m*DNB; d) *p*DNB $(\lambda_{ex} = 285 \text{ nm}).$

Table S3. Details of quenching efficiencies for TAPB-TFP with

Analyte(s)	% Quenching	<i>K</i> _{SV} (M ⁻¹)
РА	67	3.2×10^{4}
DNT	19	8.7×10^{3}
<i>m</i> -DNB	10	2.8×10^{3}
<i>p</i> -DNB	23	9.6×10^{3}

different PNAC analytes (15 ppm each).

Figure S28. Fluorescence quenching of *i*PrTAPB-TFP with a) PA; b) DNT c) *m*DNB; d) *p*DNB $(\lambda_{ex} = 290 \text{ nm}).$

Table S4. Details of quenching efficiencies for *i*PrTAPB-TFP with different PNAC analytes(23 ppm each).

Analyte(s)	% Quenching	<i>K</i> _{SV} (M ⁻¹)
РА	68	$1.8 imes 10^4$
DNT	31	8.8×10^3
<i>m</i> -DNB	20	4.2×10^{3}
<i>p</i> -DNB	39	1.1×10^{4}

Figure S29. Fluorescence quenching of *i*PrTAPB-TFPB with a) PA; b) DNT c) *m*DNB; d) pDNB ($\lambda_{ex} = 300$ nm).

Table S5. Details of quenching efficiencies for *i*PrTAPB-TFPB with different PNAC analytes

 (22 ppm each).

Analyte(s)	% Quenching	<i>K</i> _{SV} (M ⁻¹)
РА	64	$3.0 imes 10^4$
DNT	8	1.2×10^{3}
<i>m</i> -DNB	8	1.7×10^{3}
<i>p</i> -DNB	14	3.1×10^{3}

Compound	<i>i</i> PrTAPB-NPh ₂	TAPB-Benz
Empirical formula	$C_{81}H_{81}N_3$	C ₉₄ H ₇₆ N ₆ O
Formula weight	1096.49	1305.61
Temperature (K)	150(2)	100(2)
Wavelength (Å)	0.71075	1.54190
Crystal system	Monoclinic	Monoclinic
Space group	P 21/n	P 21
a (Å)	9.392(4)	7.341(4)
b (Å)	25.613(13)	30.358(14)
c (Å)	32.908(16)	16.214(9)
α (°)	90	90
β (°)	97.3580(10)	97.409(11)
γ (°)	90	90
Volume (Å ³)	7851(6)	3583(3)
Z	4	2
Density (calculated) (Mg/m ³)	0.928	1.210
Absorption coefficient (mm ⁻¹)	0.053	0.549
F(000)	2352	1380
Crystal size (mm ³)	0.20 x 0.20 x 0.20	0.21 x 0.09 x 0.04
Theta range for data collection	2.50 to 25.00°.	6.75 to 59.99°
Reflections collected	58370	15608
Goodness-of-fit on F ²	1.080	1.110
Final R indices [I>2sigma(I)]	R1 = 0.0890, wR2 = 0.2247	R1 = 0.0710, wR2 = 0.1614
R indices (all data)	R1 = 0.1200, wR2 = 0.2476	R1 = 0.1005, wR2 = 0.1891

Table S6. Crystallographic information of *i*PrTAPB-NPh2 and TAPB-Benz

Figure S30. Time resolved fluorescence decays for acetonitrile suspension of TAPB-TFP before (red) and after addition of PA (blue). Biexponential fits to the decays are included as solid lines (green).

Figure S31. Time resolved fluorescence decays for acetonitrile suspension of TAPB-TFP before (red) and after addition of DNT (blue). Biexponential fits to the decays are included as solid lines (green).

Figure S32. Time resolved fluorescence decays for acetonitrile suspension of TAPB-TFP before (red) and after addition of *p*DNB (blue). Biexponential fits to the decays are included as solid lines (green).

Figure S33. Time resolved fluorescence decays for acetonitrile suspension of TAPB-TFP before (red) and after addition of *m*DNB (blue). Biexponential fits to the decays are included as solid lines (green).

Compounds	Analyte concentration (ppm)	$ au_1(ns)$	$ au_2$ (ns)	χ^2
TAPB-TFP	-	1.7	6.8	1.01
TAPB-TFP-PA	15	1.7	7.0	1.02
TAPB-TFP-DNT	58	2.0	6.4	1.08
TAPB-TFP-pDNB	47	1.1	6.5	1.05
TAPB-TFP-mDNB	108	1.3	6.0	1.05

Table S7. Lifetime measurement of the excited state of TAPB-TFP with various polynitroaromatic analytes.

References

- 1. C. Zhang, X. Yang, Y. Zhao, X. Wang, M. Yu and J. -X. Jiang, Polymer, 2015, 61, 36.
- 2. V. S. P. K. Neti, J. Wang, S. Deng and L. Echegoyen, RSC Adv., 2015, 5, 10960.
- A. K. Sekizkardes, T. Islamoglu, Z. Kahveci and H. M. El-Kaderi, J. Mater. Chem. A, 2014, 2, 12492.
- 4. Z. –Z. Yang, H. Zhang, B. Yu, Y. Zhao, G. Ji and Z. Liu, Chem. Commun., 2015, 51, 1271.
- 5. J. Lu and J. Zhang, J. Mater. Chem. A, 2014, 2, 13831.
- 6. H. A. Patel, D. Ko and C. T. Yavuz, Chem. Mater., 2014, 26, 6729.
- B. Ashourirad, A. K. Sekizkardes, S. Altarawneh and H. M. El-Kaderi, *Chem. Mater.*, 2015, 27, 1349.
- 8. A. K. Sekizkardes, S. Altarawneh, Z. Kahveci, T. Islamoglu and H. M. El-Kaderi, *Macromolecules*, 2014, **47**, 8328.
- 9. Z. Chang, D.-S. Zhang, Q. Chen and X.-H. Bu, Phys. Chem. Chem. Phys., 2013, 15, 5430.
- 10. R. Dawson, E. Stockel, J. R. Holst, D. J. Adams and A. I. Cooper, *Energy Environ. Sci.*, 2011, 4, 4239.
- 11. P. Z. Li and Y. L. Zhao, Chem.-Asian J., 2013, 8, 1680.

- 12. Y. Zhu, H. Long and W. Zhang, Chem. Mater., 2013, 25, 1630.
- 13. S. Kandambeth, A. Mallick, B. Lukose, M. V. Mane, T. Heine and R. Banerjee, J. Am. Chem. Soc., 2012, 134, 19524.
- 14. X. Wang, Y. Zhao, L. Wei, C. Zhang, X. Yang, M. Yu and J.-X. Jiang, *Macromolecular Chemistry and Physics*, 2015, **216**, 504.