Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

## **Supporting information**

## Systematic tuning the $\Delta E_{ST}$ and charge balance property of the bipolar host for low operating voltage and high power efficiency solution-processed electrophosphorescent devices

Xinxin Ban<sup>a</sup>, Wei Jiang<sup>\*a</sup>, Kaiyong Sun<sup>a</sup>, Haiyong Yang<sup>a</sup>, Yanan Miao<sup>a</sup>, Fenghao Yang<sup>a</sup>, Yueming Sun<sup>\*a</sup>, Bin Huang<sup>a</sup>, Lian Duan<sup>\*b</sup>

## Content

| Solvent Effect on PL Emissions of the Hosts1 | Ĺ |
|----------------------------------------------|---|
| PL Emissions in Film                         | 3 |
| AFM Images of xCz-nPBI                       | 3 |

To determine the change in dipole moment upon excitation, we used the Lippert-Mataga equation Eq. (1), which expressed the Stokes shift as a function of the solvent polarity parameter  $\Delta f(\varepsilon, n)$ .

$$\Delta v = v_{abs} - v_f \cong \frac{2(\Delta \mu)^2}{hca^3} \Delta f(\varepsilon, n) + A$$
(1)

and  $\Delta f(\varepsilon, n)$  is calculated by

$$\Delta f(\varepsilon, n) = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$$

(2)

Here,  $\Delta v = v_{abs} \cdot v_f$  corresponds to the Stokes shift (in cm<sup>-1</sup>) between the maxima of absorption and fluorescence emission. Fig S1 shows the PL emission in different solvents. The other terms: h, c and a respectively represent the Planck's constant, the velocity of light and the solute cavity radius.<sup>39</sup> In Eq. (2), n and  $\varepsilon$  are refractive index and the static dielectric constant of the solvent, respectively. Table S1 and S2 list the  $\Delta v$  values for xCz-PBI and Cz-nPBI in different solvents. Fig. S2 shows the linear Lippert-Mataga plots with the slope values of 16124, 13186, 10626, 8263, 8075 and 6567 cm<sup>-1</sup> for 6Cz-PBI, 4Cz-PBI, 2Cz-PBI, Cz-2PBI, Cz-4PBI and Cz-6PBI, respectively.

Table S1 Spectral properties of xCz-PBI in different solvents

| Solvents        | $\Delta f(\varepsilon,n)$ | 2Cz-PBI             |                 |                     | 4Cz-PBI             |                 |                     | 6Cz-PBI             |                 |                     |
|-----------------|---------------------------|---------------------|-----------------|---------------------|---------------------|-----------------|---------------------|---------------------|-----------------|---------------------|
|                 |                           | $\lambda_{abs}(nm)$ | $\lambda_f(nm)$ | $\Delta V(cm^{-1})$ | $\lambda_{abs}(nm)$ | $\lambda_f(nm)$ | $\Delta V(cm^{-1})$ | $\lambda_{abs}(nm)$ | $\lambda_f(nm)$ | $\Delta V(cm^{-1})$ |
| N-hexane        | 0.001                     | 342                 | 393             | 3794                | 349                 | 433             | 5560                | 346                 | 410             | 4511                |
| Tetrahydrofuran | 0.210                     | 342                 | 419             | 5373                | 347                 | 468             | 7451                | 345                 | 470             | 7709                |
| Dichloromethane | 0.218                     | 344                 | 435             | 6081                | 348                 | 484             | 8074                | 347                 | 476             | 7810                |
| Ethanol         | 0.289                     | 341                 | 454             | 7299                | 346                 | 511             | 9332                | 346                 | 506             | 9138                |

Table S2 Spectral properties of Cz-nPBI in different solvents

| Solvents        | $\Delta f(\varepsilon,n)$ | Cz-2PBI             |                 |                     | Cz-4PBI             |                 |                     | Cz-6PBI             |                 |                     |
|-----------------|---------------------------|---------------------|-----------------|---------------------|---------------------|-----------------|---------------------|---------------------|-----------------|---------------------|
|                 |                           | $\lambda_{abs}(nm)$ | $\lambda_f(nm)$ | $\Delta V(cm^{-1})$ | $\lambda_{abs}(nm)$ | $\lambda_f(nm)$ | $\Delta V(cm^{-1})$ | $\lambda_{abs}(nm)$ | $\lambda_f(nm)$ | $\Delta V(cm^{-1})$ |
| N-hexane        | 0.001                     | 299                 | 390             | 7804                | 304                 | 390             | 7250                | 305                 | 379             | 6401                |
| Tetrahydrofuran | 0.210                     | 297                 | 403             | 8856                | 304                 | 399             | 7832                | 304                 | 401             | 7957                |
| Dichloromethane | 0.218                     | 297                 | 407             | 9100                | 301                 | 404             | 8470                | 304                 | 402             | 8019                |
| Ethanol         | 0.289                     | 297                 | 421             | 9917                | 301                 | 415             | 9126                | 303                 | 413             | 8790                |

 ${}^{a}\Delta f$  is the orientation polarizability parameter of the solvent.  ${}^{b}\lambda_{abs}$  is absorption wavelength.  ${}^{c}\lambda_{abs}$  is fluorescent wavelength.  ${}^{d}\Delta V$  is the Stokes shift between the maxima of absorption and fluorescence emission.



Figure S1. PL emissions of xCz-nPBI in different solvents.



Figure S2. Lippert-Mataga plots of xCz-nPBI in various solutions.



Figure S3. PL Emissions of xCz-nPBI in Film



Figure S4. AFM Images of xCz-nPBI