Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

SUPPORTING INFORMATION

Aggregation Induced Emission Based Fluorescence pH and Temperature Sensors: Probing Polymer Interactions in Poly(*N*-isopropyl acrylamide-co-tetra(phenyl)ethene acrylate)/Poly(methacrylic acid) Interpenetrating Polymer Networks

Hui Zhou,† Feng Liu,‡ Xiaobai Wang,† Hong Yan,† Jing Song,† Qun Ye,† Ben Zhong Tang*,§ and Jianwei Xu*,†,‡

†Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore.

[‡]Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore.

§Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

*Corresponding author: Jianwei Xu and Ben Zhong Tang Email address: <u>jw-xu@imre.a-star.edu.sg</u>; <u>tangbenz@ust.hk</u>

Mailing address: 3 Research Link, Singapore 117602

Tel: 65-6872-7543 Fax: 65-6872-7528

Table content

Scheme S1. Synthetic routes of monomers (M2	,
copolymers (P5 and P6).	(3)
Figure S1. ¹ H NMR spectrum of P1 in CDCl ₃ .	(4)
Figure S2. (a) TGA thermograms of PNIPAM and P1-	
heating rate of 20 °C/min. (b) DSC thermograms of PNI	
nitrogen at a heating rate of 10 °C/min.	(5)
Figure S3. ((a) Calibration curve for determination of co	
(1,2,2-triphenylvinyl)phenol (TPE-OH) as standard. (b) P4-P6 . The absorbance of TPE-OH at 318 nm was	•
PNIPAM in THF. [TPE-OH] = 10^{-5} to 10^{-4} M, [PNIPAM	•
squares and circles are the data points for the s	
respectively.	(5)
Figure S4. Fluorescence spectra of polymer P1-6 in Th	` ,
[P4] = 0.5 mg/mL, 20 °C).	(6-7)
[. ·] 0.0 ····g/····_, 20 °0/.	(3.7)
Figure S5. Fluorescence spectrum of monomers (M1-3)	and copolymers (P1-6) in solid
state. Films were fabricated by drop coating of 50.0 µL T	,
	,
Figure S6. Fluorescence spectra of polymer in solution a	and film. P4 and P4+PS in THF,
[P4] = 0.5 mg/mL, [PS] = 0.5 mg/mL. P4 film was fabrical	ated by drop coating of 50.0 µL
THF solution of P4, [P4] = 5.0 mg/mL. P4+PS film was	s fabricated by drop coating of
50.0 μ L THF solution of P4 and PS , [P4] = 5.0 mg/mL, [P	- · · · ·
Figure S7 . (a) Plot of $1/I_0$ vs temperature of P4 . (b)	
turbidity (kcps) vs temperature of P4. [P4] = 0.5 mg/mL	
buffer, I_0 and I are the fluorescence intensity at 14 °C	
respectively. The fluorescence intensity was recorded at	
Figure S8. ¹ H NMR spectra of P4 in D ₂ O at various temp	` ,
Figure S9. Plot of fluorescence intensity vs temp	
concentration in H ₂ O. Concentration of copolymers P4	
respectively. Fluorescence was measured at 469 nm, ex	• • • • • • • • • • • • • • • • • • • •
Figure \$10. ¹ H NMR spectrum of monomer (M1).	(9)
Figure S11. ¹³ C NMR spectrum of monomer (M1).	(10)
Eigure \$42 UDMS anastrum of manamar (M4)	(10)
Figure S12. HRMS spectrum of monomer (M1).	(10)
Figure S13. FTIR spectrum of monomer (M1).	(11)
Figure S14. ¹³ C NMR spectrum of P1 in CDCl ₃ .	(11)
Figure S15. FTIR spectrum of P1.	(12)
Figure S16. ¹ H NMR spectrum of P2 in CDCl ₃ .	(12)
Figure S17. ¹³ C NMR spectrum of P2 in CDCl ₃ .	(13)

Figure S18. FTIR spectrum of P2.	(13)	
Figure S19. ¹ H NMR spectrum of P3 in CDCl ₃ .		(14)
Figure S20. ¹³ C NMR spectrum of P3 in CDCl ₃ .		(14)
Figure S21. FTIR spectrum of P3.	(15)	
Figure S22. ¹ H NMR spectrum of P4 in CDCl ₃ .		(15)
Figure S23. ¹³ C NMR spectrum of P4 in CDCl ₃ .		(16)
Figure S24. FTIR spectrum of P4.	(16)	
Figure S25. ¹ H NMR spectrum of P5 in CDCl ₃ .		(17)
Figure S26. FTIR spectrum of P5.	(17)	
Figure S27. ¹ H NMR spectrum of P6 in CDCl ₃ .		(18)
Figure S28. FTIR spectrum of P6.	(18)	
Reference	` ,	(19)

Scheme S1. Synthetic routes of monomers (M2 and M3)^{1,2} and corresponding copolymers (P5 and P6).

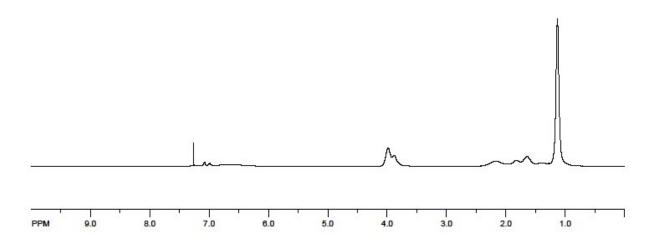
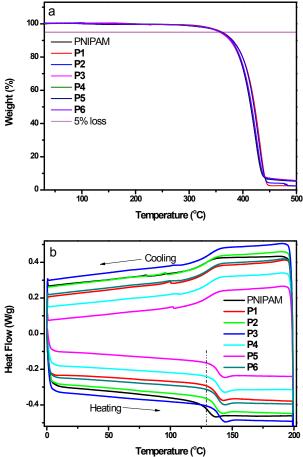
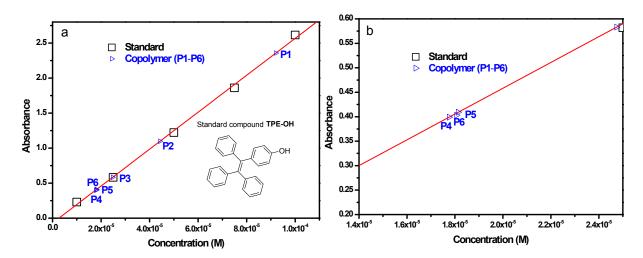
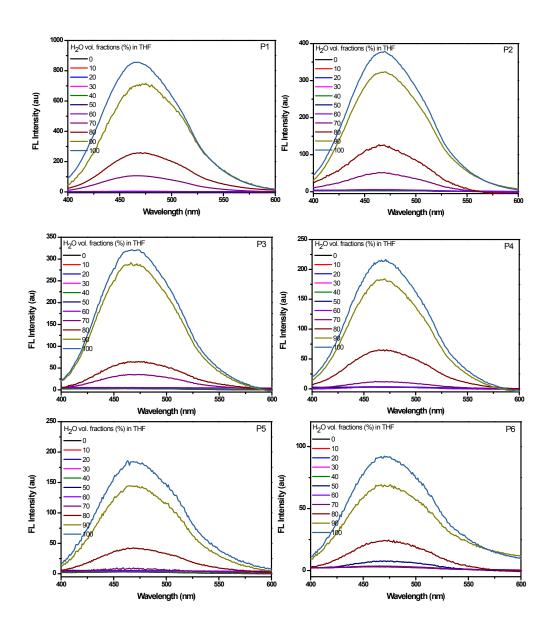
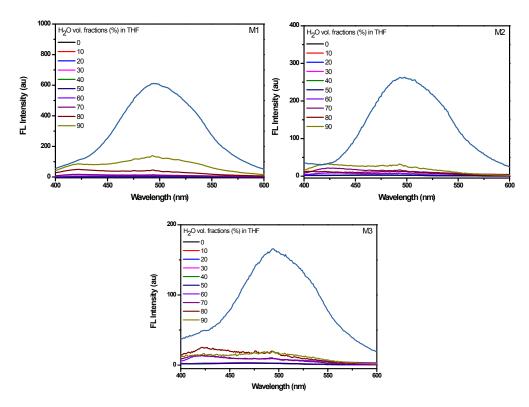
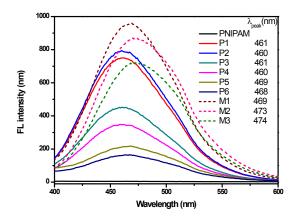




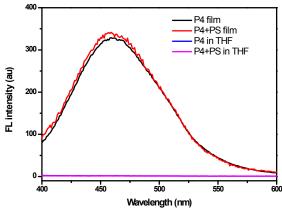
Figure S1. ¹H NMR spectrum of P1 in CDCl₃.

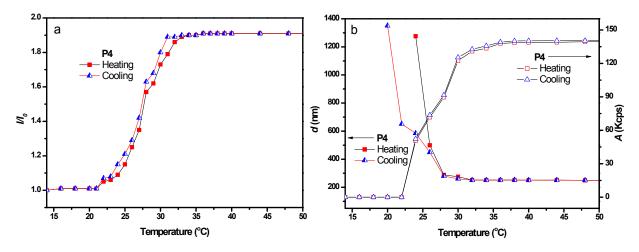


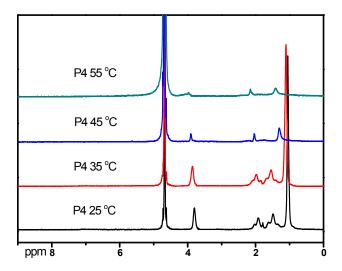

Temperature (°C) Figure S2. (a) TGA thermograms of PNIPAM and P1-6 recorded under nitrogen at a heating rate of 20 °C/min. (b) DSC thermograms of PNIPAM and P1-6 recorded under nitrogen at a heating rate of 10 °C/min.

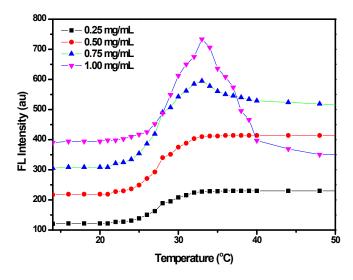

Figure S3. (a) Calibration curve for determination of copolymer composition, using 4-(1,2,2-triphenylvinyl)phenol (TPE-OH) as standard. (b) Enlarged calibration curve for

P4-P6. The absorbance of TPE-OH at 318 nm was recorded in the presence of PNIPAM in THF. [TPE-OH] = 10^{-5} to 10^{-4} M, [PNIPAM] = 0.50 mg/mL, 20 °C. Open squares and circles are the data points for the standard and the copolymers, respectively.




Figure S4. Fluorescence spectra of polymer **P1-6** in THF/H₂O mixtures (λ_{ex} = 318 nm, [**P4**] = 0.5 mg/mL, 20 °C).


Figure S5. Fluorescence spectra of monomers (M1-3) and copolymers (P1-6) in solid state. Films were fabricated by drop coating of 50.0 μ L THF solution, [C] = 5.0 mg/mL.


Figure S6. Fluorescence spectra of polymer in solution and film. **P4** and **P4+PS** in THF, [**P4**] = 0.5 mg/mL, [**PS**] = 0.5 mg/mL. **P4** film was fabricated by drop coating of 50.0 μ L THF solution of **P4**, [**P4**] = 5.0 mg/mL. **P4+PS** film was fabricated by drop coating of 50.0 μ L THF solution of **P4** and **PS**, [**P4**] = 5.0 mg/mL, [**PS**] = 5.0 mg/mL.

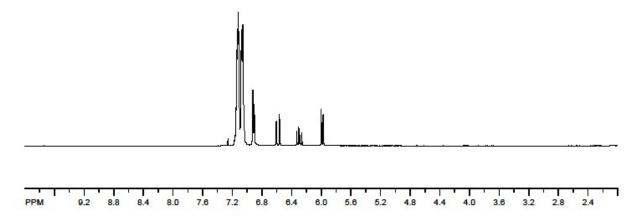

Figure S7. (a) Plot of I/I_0 vs temperature of **P4**. (b) The particle size and solution turbidity (kcps) vs temperature of **P4**. [**P4**] = 0.5 mg/mL, 10.0 mM Na₂HPO₄-citric acid buffer, I_0 and I are the fluorescence intensity at 14 °C and a measured temperature, respectively. The fluorescence intensity was recorded at 469 nm; $\lambda_{\rm ex}$ = 318 nm.

Figure S8. 1 H NMR spectra of **P4** in D $_{2}$ O at various temperatures, [C] = 0.5 mg/mL, scan number = 80.

Figure S9. Plot of fluorescence intensity vs temperature of **P4** with different concentration in H₂O. Concentration of copolymers **P4** is 0.25, 0.50 and 1.0 mg/mL, respectively. Fluorescence was measured at 469 nm, excited at 318 nm.

Figure S10. ¹H NMR spectrum of monomer (**M1**).

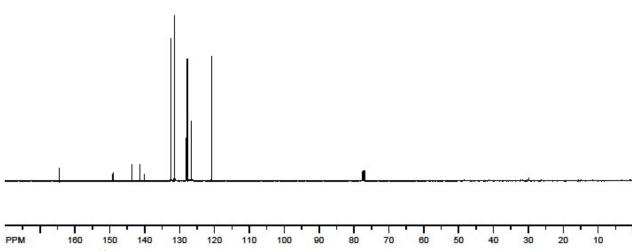


Figure S11. ¹³C NMR spectrum of monomer (M1).

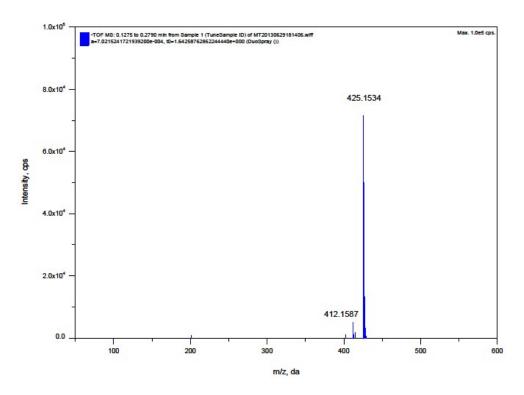


Figure S12. HRMS spectrum of monomer (M1).

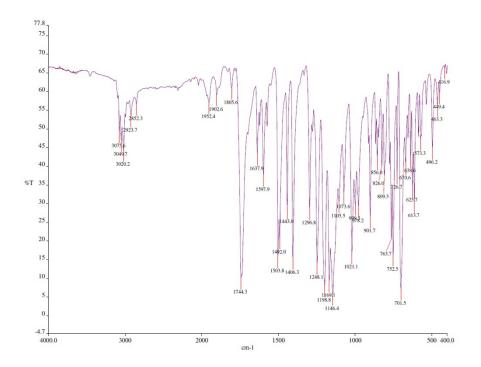


Figure S13. FTIR spectrum of monomer (M1).

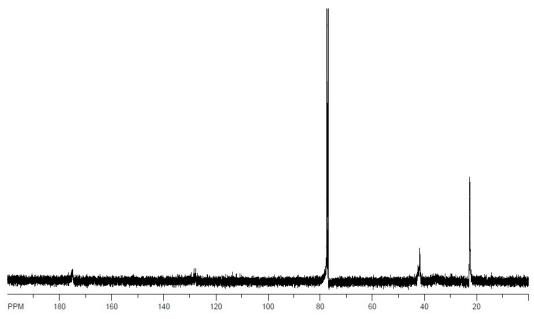


Figure S14. 13 C NMR spectrum of P1 in CDCl₃.

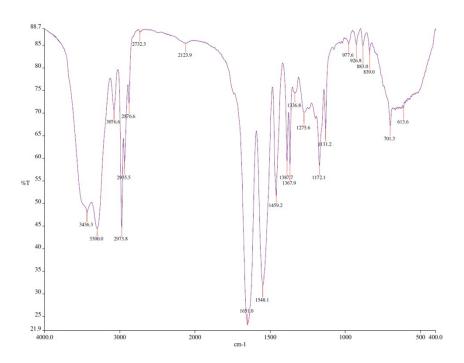


Figure S15. FTIR spectrum of P1.

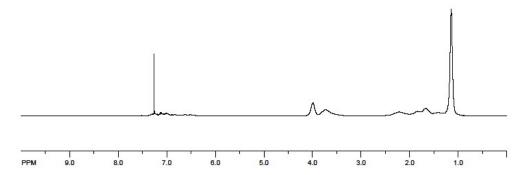


Figure S16. ¹H NMR spectrum of **P2** in CDCl₃.

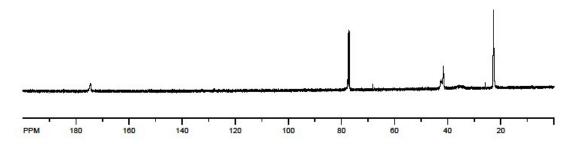


Figure S17. ¹³C NMR spectrum of **P2** in CDCl₃.

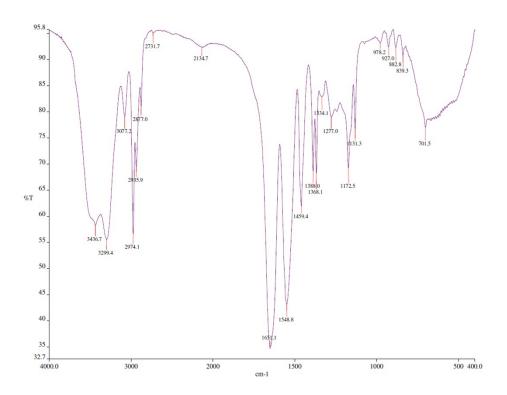


Figure S18. FTIR spectrum of P2.

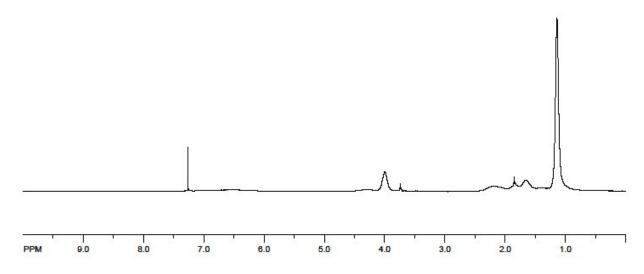


Figure S19. ¹H NMR spectrum of P3 in CDCl₃.

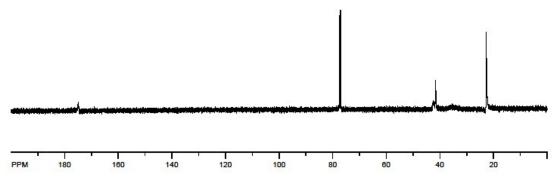


Figure S20. 13 C NMR spectrum of P3 in CDCl₃.



Figure S21. FTIR spectrum of P3.

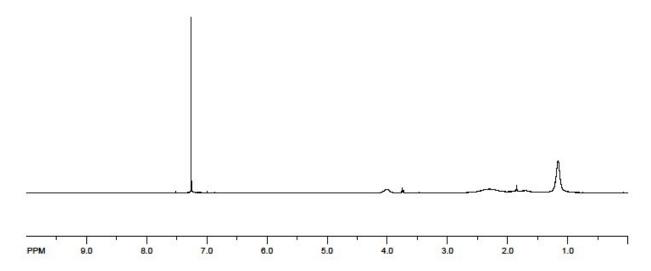


Figure S22. ¹H NMR spectrum of **P4** in CDCl₃.

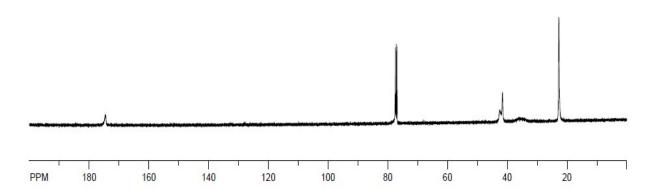


Figure S23. 13 C NMR spectrum of P4 in CDCl₃.

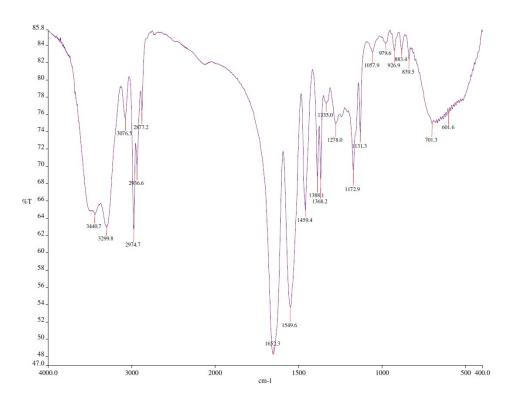


Figure S24. FTIR spectrum of P4.

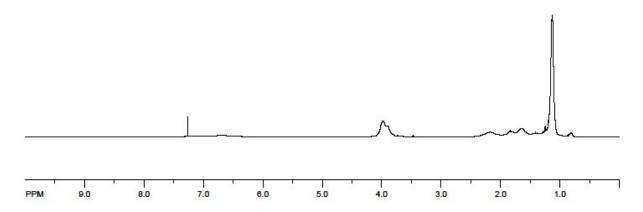


Figure S25. ¹H NMR spectrum of P5 in CDCl₃.

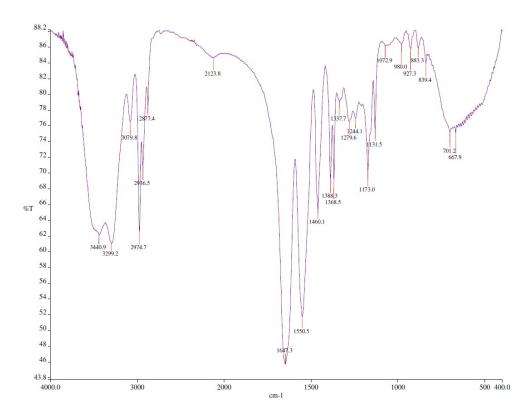


Figure S26. FTIR spectrum of P5.

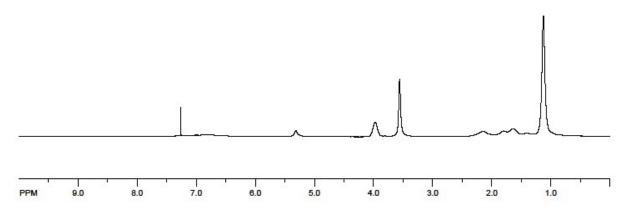


Figure S27. ¹H NMR spectrum of P6 in CDCl₃.

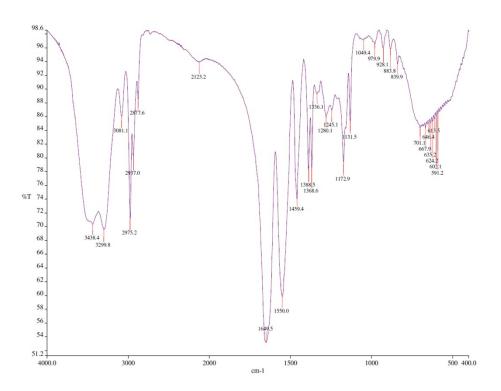


Figure S28. FTIR spectrum of P6.

REFERENCES

- (1) Zhou, H.; Li, J.; Chua, M. H.; Yan, H.; Tang, B. Z.; Xu, J. Polym. Chem. 2014, 5, 5628.
- (2) Zhou, H.; Ye, Q.; Neo, W. T.; Song, J.; Yan, H.; Zong, Y.; Tang, B. Z.; Hor, T. S. A.; Xu, J. *Chem. Commun.* **2014**, *50*, 13785.