Electronic supplementary information

Theoretical investigation on armchair silicene nanoribbons with application in stretchable electronics

Tengying Ma^a, Shizheng Wen^b, Caixia Wu^a, Likai Yan^{*a}, Min Zhang^{*a}, Yuhe Kan^b and Zhongmin Su^{*a}

 ^a Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. E-mail: yanlk924@nenu.edu.cn; mzhang@nenu.edu.cn; zmsu@nenu.edu.cn
^b Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, People's Republic of China

E-mail: yanlk924@nenu.edu.cn; mzhang@nenu.edu.cn; zmsu@nenu.edu.cn

Fig. S1 The band structures of deformed SiNRs for $\theta = 10^{\circ} \sim 120^{\circ}$.