Supporting Information

Lutetium doping for making big core and core-shell upconversion nanoparticles

Kai Huang, Muthu Kumara Gnanasammandhan Jayakumar and Yong Zhang*

Department of Biomedical Engineering, National University of Singapore, Singapore

Correspondence: Prof. Yong Zhang, Department of Biomedical Engineering Faculty of Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Phone: (0065) 65164871 Fax: (0065) 68723069 E-mail: <u>biezy@nus.edu.sg</u>

NaY _{1-x} Lu _x F ₄ :Yb,Er		Y(%)	Lu(%)	Yb(%)	Er(%)	Tm(%)
x=0%	Concentration in raw materials	78	0	20	2	0
	ICP-OES measurement	79.73	0	18.06	2.21	0
x=10%	Concentration in raw materials	68	10	20	2	0
	ICP-OES measurement	70.45	9.53	17.90	2.12	0
x=20%	Concentration in raw materials	58	20	20	2	0
	ICP-OES measurement	61.03	18.85	18.01	2.11	0
x=30%	Concentration in raw materials	48	30	20	2	0
	ICP-OES measurement	51.58	27.92	18.37	2.13	0
x=50%	Concentration in raw materials	28	50	20	2	0
	ICP-OES measurement	33.75	44.43	19.50	2.32	0
NaYF4:Yb,Er@	Concentration in raw materials	8	62.08	29.17	0.33	0.42
5X(NaLuF ₄ :Yb,Tm)	ICP-OES measurement	8.91	62.25	28.03	0.36	0.45

Table S1. Element analysis through ICP-OES of the UCNs with different Lu^{3+} doping and with NaLuF₄ shell coating. The elemental content of the samples generally agree with the concentration of lanthanides in the raw materials.

Figure S1. XRD patterns of NaY/LuF₄: Yb, Er UCNs doped with different concentrations of Lu³⁺ and core-shell UCNs of NaYF₄: Yb, Er@5X(NaLuF₄: Yb, Tm). Standard XRD patterns of β -NaYF₄ and β -NaLuF₄ are plotted as references.

Figure S2. Low magnification TEM images of NaYF₄:Yb,Er UCNs doping with Lu³⁺ at the concentration of 30% (a) and 50% (b), and core-shell UCNs with NaLuF₄ shell at 1:5 (e) and 1:10 (f) core/shell ratio incubated for 4 hours. TEM images of core-shell UCNs with NaLuF₄ shell at 1:1 core/shell ratio incubated for 4 hours (c and d). High resolution TEM image (g) and its correspondence selected area electron diffraction (h) confirm the monocrystal of the synthesized UCNs.

Figure S3. Coating NaLuF₄ shell onto bigger core UCNs. TEM image of core UCNs (a), coreshell UCNs with NaLuF₄ shell with 1:5 (b) and 1:10 (c) core/shell ratio; scale bar is 200 nm. d) Average size of the above samples measured by DLS. e) Luminescence spectra of the above samples; Er and Tm are doped in core and shell, respectively.

Figure S4. FTIR spectra of the core UCNs confirms the surface capping of oleic acid¹. Band at 2930 and 2854 cm⁻¹ are assigned to the asymmetric (v_{as}) and symmetric (v_{s}) stretching vibrations of methylene (CH₂) in the long alkyl chain of oleic acid, respectively. Bands at 1705, 1553 and

1458 cm⁻¹, are assigned to the stretching vibration of C=O of the carboxyl, the asymmetric (v_{as}) and symmetric (v_s) stretching vibrations of the carboxylic group of oleic acid, respectively.

References

1. T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu and F. Li, *Inorganic Chemistry Communications*, 2010, **13**, 392-394.