Supporting information

A Highly Sensitive Fluorescent Sensor Based on Small Molecule Doped in Electrospun Nanofibers: Detection of Explosives as well as Color Modulation

Wei Xue,^a Yang Zhang,^a Juanjuan Duan,^a Dong Liu,^a Yawei Ma, ^a Naien Shi, ^{*a}

Linghai Xie, *a Shufen Chen, a Yan Qian a and Wei Huang* a,b

^a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China Fax: +86 25 8586 6396; Tel: +86 25 8586 6332

^b Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

Fax: +86 25 5813 9988; Tel: +86 25 5813 9001.

E-mail: iamneshi@njupt.edu.cn, iamlhxie@njupt.edu.cn, wei-huang@njtech.edu.cn

Contents

A. Experimental Section.

B. ¹H NMR (400 MHz, CDCl₃, ppm), ¹³C NMR (100 MHz, CDCl₃, ppm), and MS of the compounds.

C. The diameter distribution of the PEO/MePyCz fibers.

D. Time-dependent fluorescence quenching process of PEO/MePyCz fibrous film with the MePyCz content of 5.0 wt%.

E. Energy levels of HOMO and LUMO orbitals of MePyCz, PyCz and the target explosives.

F. Time-dependent fluorescence quenching process of PEO/MePyCz spin-coating film with the MePyCz content of 0.5 wt%.

G. FESEM images of PEO/ThFO fibers and PEO/MePyCz/ThFO hybrid fibers.

H. Fluorescence decay profiles of PEO/MePyCz/ThFO hybrid nanofibers.

A. Experimental Section.

Synthesis of MeTs and MeCz

Scheme S1. The synthesis procedure of 4-(2-(2-(2-methoxy)ethoxy)ethoxy)-9H-carbazole (MeCz).

Synthesis of 2-(2-(2-methoxy)ethoxy)ethyl-4-methylbenzenesulfonate (MeTs, Scheme S1)

2.0 mL aqueous solution of NaOH (1.8 g, 45 mmol) was added to 7.5 mL THF solution of 2-(2-(2-methoxyethoxy)ethoxy)ethanol (5 g, 30 mmol), and the mixture was cooled to 5°C, then 8.0 mL THF solution of 4-methylbenzene-1-sulfonyl chloride (5.72 g, 30 mmol) was added under stirring for 2 h. Then the reaction was quenched by ice water. The organic layer was then dried by MgSO₄, filtered, and concentrated in vacuum, and the product of MeTs was obtained as a light yellow oil (8.91 g, 92%). ¹H NMR (400 MHz, CDCl₃, ppm, Fig. S1) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 4.10 (t, *J* = 4.8 Hz, 2H), 3.63 (t, *J* = 4.8 Hz, 2H), 3.55 (dd, *J* = 5.8, 3.4 Hz, 4H), 3.53 (s, 2H), 3.47 (dd, *J* = 5.8, 3.4 Hz, 2H), 3.31 (s, 3H), 2.35(s, 3H). GC-MS (EI-m/z): Calcd. 318.11, Found 318.15.

Synthesis of 4-(2-(2-(2-methoxy)ethoxy)ethoxy)-9H-carbazole (MeCz, Scheme S1)

2.5 mL 10% NaOH aqueous solution and the 2-(2-(2-methoxyethoxy)ethoxy)ethyl- 4methylbenzenesulfonate (6.01 g, 18.88 mmol) were successively added to a solution of 9H-carbazol-4-ol (3.46 g, 18.88 mmol) in ethanol (57 mL). The resulting mixture was continuously stirred at 45~50°C for 3 days. The reaction mixture was then filtered and the dark reside was extracted with CH₂Cl₂. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuum. The crude was purified by silica gel chromatography (PE/CH₂Cl₂, 4/1) to furnish MeCz as a brown viscous liquid (4.32 g, 70%). ¹H NMR (400 MHz, CDCl₃, ppm, Fig. S1) δ 8.33 (d, *J* = 7.8 Hz, 1H), 8.18 (s, 1H), 7.43 – 7.35 (m, 2H), 7.30 (t, *J* = 8.0 Hz, 1H), 7.26–7.21 (m, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 4.38 (t, *J* = 5.0 Hz, 2H), 4.05 (t, *J* = 5.0 Hz, 2H), 3.84 (dd, *J* = 5.8, 3.8 Hz, 2H), 3.72 (dd, *J* = 5.8, 3.8 Hz, 2H), 3.67 (dd, *J* = 5.6, 3.7 Hz, 2H), 3.54 (dd, *J* = 5.6, 3.7 Hz, 2H), 3.36 (s, 3H). GC-MS (EI-m/z): Calcd. 329.16, Found 329.23.

Synthesis of PyCz (Scheme S2)

Scheme S2. Synthesis of 9-(pyren-3-yl)-9H-carbazole.

9*H*-carbazole (0.68 g, 4 mmol), 1-Bromopyrene (1.35 g, 4.8 mmol), K₂CO₃ (1.65 g, 12 mmol), CuI(0.92 g, 4.8 mmol), 2,2'-bipyridine (0.032 g, 0.2 mmol) and 1,10-

phenanthroline (0.036 g, 0.2 mmol) were added in a three-neck flask covered with silver paper. After blowing N₂, 1,2-Dichlorobenzene was added via syringe dropwise at room temperature. The resulting mixture was refluxed for 24 h at 180°C. The mixture was allowed to cool to room temperature and extracted with CH_2Cl_2 . The organic phase was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude was purified by column chromatography (PE) to furnish PyCz as a white solid (1.17 g, 80%). ¹H NMR (400Hz, CDCl₃, ppm, Fig. S4) δ : 7.03-7.05 (m, 2H), 7.32-7.38 (m, 4H), 7.55-7.58 (d, J=7.6 Hz, 1H), 7.94-7.97 (d, J=8.0 Hz, 1H), 8.05-8.12 (m, 2H), 8.19-8.22 (m, 3H), 8.26-8.30 (m, 3H), 8.36-8.38 (d, J=8.4 Hz, 1H). ¹³C NMR (100 Hz, CDCl₃, ppm, Fig. S4) δ : 110.26, 119.91, 120.39, 122.64, 123.37, 124.63, 125.54, 125.74, 125.81, 125.81, 126.03, 126.50, 126.59, 127.20, 128.26, 128.63, 128.73, 131.00, 131.05, 131.17, 131.44, 142.50. GC-MS (EI-m/z): Calcd. 367.14, Found 367.18.

B. ¹H NMR (400 MHz, CDCl₃, ppm), ¹³C NMR (100 MHz, CDCl₃, ppm), and MS of the synthesized compounds.

Fig. S1 ¹H NMR (400 MHz, CDCl₃, ppm) of (a) MeTs, (b) MeCz, (c) MePyCz and (d)

ThFO

Fig. S2 ¹³C NMR spectrum (100 MHz, CDCl₃, ppm) of (a) MePyCz and (b) ThFO.

Fig. S3 (a) MALDI-TOF MS of MePyCz (b) GC-MS of ThFO.

Fig. S4 (a) ¹H NMR (400 MHz, CDCl₃, ppm) and (b) ¹³C NMR spectrum (100 MHz, CDCl₃, ppm) of PyCz.

C. The diameter distribution of the PEO/MePyCz fibers.

Fig. S5 The diameter distribution of the PEO/MePyCz fibers.

D. Time-dependent fluorescence quenching process of PEO/MePyCz fibrous film

with the MePyCz content of 5.0 wt%.

Fig. S6 Time-dependent fluorescence quenching process of PEO/MePyCz fibrous film with the MePyCz content of 5.0 wt%.

E. Energy levels of HOMO and LUMO orbitals of MePyCz, PyCz and the target

explosives.

Fig. S7 Energy levels of HOMO and LUMO orbitals of MePyCz, PyCz and the target explosives. Geometry optimization and energy calculation were performed with density-functional theory (B3LYP/6-31g*) using Gaussian 09 package.

F. Time-dependent fluorescence quenching process of PEO/MePyCz spincoating film with the MePyCz content of 0. 5 wt%.

Fig. S8 Time-dependent fluorescence quenching process of PEO/MePyCz spincoating film with the MePyCz content of 0.5 wt%.

G. FESEM images of PEO/ThFO fibers and PEO/MePyCz/ThFO hybrid fibers.

Fig. S9 FESEM images of (a) PEO/ThFO fibers and (b) PEO/MePyCz/ThFO $(v_{MePyCz}:v_{ThFO}=4:1)$ hybrid fibers.

H. Fluorescence decay profiles of PEO/MePyCz/ThFO hybrid nanofibers.

Fig. S10 Fluorescence decay profiles of PEO/MePyCz/ThFO hybrid nanofibers at different volume ratio of MePyCz and ThFO chloroform solution (v_{MePyCz} : v_{ThFO} = 16:0, 16:1, 16:2, 16:4, 16:8, 0:16) monitored at 442 nm.