Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Impact of halogen ions on the guest dependent spin crossover behavior and porosity of Co(II) one-dimensional coordination polymers [Co (4'-(4-pyridyl)-2,2':6',2"-terpyridine) X_2] (X = Cl and Br)

Ryo Ohtani, Kodai Shimayama, Akio Mishima, Masaaki Ohba, Ryuta Ishikawa, Satoshi Kawata, Masaaki Nakamura, Leonard F. Lindoy, and Shinya Hayami

Corresponding authors:

S. Hayami, hayami@sci.kumamoto-u.ac.jp

Experimental Sections

Synthesis

$[CoCl_2(pyterpy)] \cdot 2H_2O (1 \cdot 2H_2O)$

Single crystals of $1\cdot 2H_2O$ were prepared as follows. The pyterpy (1 equiv.) was dissolved in hot MeOH, then $CoCl_2$ (1 equiv.) in MeOH was added to the solution. This mixture was stirred at room temperature for 8h and a brown precipitate was obtained by filtration. Orange brown crystals of $1\cdot 2H_2O$ were obtained by slow evaporation of the filtrate.

[CoBr₂(pyterpy)]·MeOH (2·MeOH)

Single crystals of **2·MeOH** were prepared by a literature method. The pyterpy (1 equiv.) in MeOH was placed in one sidearm of an H-tube. CoBr₂·6H₂O (1 equiv.) was placed in the other side, and MeOH was gently layered over both sides until the H-tube was full. After two weeks brown crystals of **2·MeOH** had formed. The MeOH solvent molecules were exchanged by H₂O from the atmosphere immediately after filatration to yield **2·H₂O**. **2·H₂O**: Anal. Calcd for Br₂C₂₀CoH₁₆N₄O: C, 43.91; H, 2.95; N, 10.24. Found: C, 43.61; H, 3.18; N, 10.21.

[1] S. Hayami, K. Hashiguchi, G. Juhasz, M. Ohba, H. Okawa, Y. Maeda, K. Kato, K. Osaka, M. Takata, K. Inoue, *Inorg. Chem.*, 2004, 43, 4124.

Physical measurements

Temperature-dependent magnetic susceptibilities were measured by a Superconducting Quantum Interference Device (SQUID) magnetometer at field strengths of 1 T. X-ray powder diffraction (XRPD) patterns were performed on a Rigaku SmartLab X-ray difractometer (RAD-2A with a 2.0 kW Cu KαX-ray). Single-crystal X-ray data were recorded on a Rigaku/XtaLAB P200 MM007HF-DW diffractometer and processed using Rigaku/CrystalClear software. The structure was solved by direct methods (Sir 2004) and refined by full-matrix least-squares refinement using the SHELXL-2013 computer program. The hydrogen atoms were refined geometrically by using a riding model. TGA curves were generated by a thermal analyzer (Seiko Instruments, EXSTAR 6000) at scan rate 5 K/min. Adsorption isotherms were measured with BELSORP-max volumetric adsorption equipment. Elemental analyses (C,H,N) were carried out on a J-SCIENCE LAB JM10 analyser at the Instrumental Analysis Centre of Kumamoto University.

Table S1 Crystal Parameters for 1·2H₂O and 2·MeOH

	1·2H ₂ O	2·MeOH	
Formula	C20 H14 Cl2 Co N4 O2	C21 H18 Br2 Co N4 O	
Formula weight	474.21	561.14	
Temperature / K	100	100	
Crystal System	monoclinic	monoclinic	
Space Group	P 2/n (#13)	$P 2_1/c (#14)$	
a / Å	8.8298 (6)	8.5932 (7)	
b / Å	11.2957 (8)	10.7755 (8)	
c / Å	10.6572 (7)	21.7683 (18)	
α / deg	90.0000	90.0000	
β / deg	112.828 (9)	97.685 (13)	
γ / deg	90.0000	90.0000	
$V / Å^3$	979.68	1997.55	
Z values	2	4	
R - Factor	3.44	9.56	

Table S2 Selected Bond Lengths and Angles for $1 \cdot 2H_2O$

Bond Length (Å)			
Co-N(1)	2.173(2)		
Co-N(2)	2.079(2)		
Co-N(3)	2.142(2)		
Bond Angle (deg)			
N(1)-Co- $N(1)$	151.66(9)	N(1)-Co-Cl(1)	88.61(6)
N(1)-Co- $N(2)$	75.83(9)	N(2)-Co-Cl(1)	90.67(7)
N(1)-Co-N(3)	104.17(9)	N(3)-Co-Cl(1)	89.33(6)

Table S3 Selected Bond Lengths and Angles for **2·MeOH**

Bond Length (Å)			
Co-N(1)	2.009(9)	Co-N(4)	1.982(9)
Co-N(2)	1.865(9)		
Co-N(3)	1.975(9)		
Bond Angle (deg)			
N(1)-Co- $N(2)$	80.6(4)	N(2)-Co-Br(1)	86.5(3)
N(1)-Co- $N(3)$	163.1(4)	N(3)-Co-Br(1)	84.2(3)
N(1)-Co- $N(4)$	99.1(4)	N(4)-Co-Br(1)	93.3(3)
N(2)-Co- $N(3)$	82.6(4)	N(1)-Co-Br(2)	88.0(3)
N(2)-Co- $N(4)$	179.6(4)	N(2)-Co-Br(2)	86.6(3)
N(3)-Co- $N(4)$	97.7(4)	N(3)-Co-Br(2)	91.4(3)
N(1)-Co-Br(1)	94.4(3)	N(4)-Co-Br(2)	93.5(3)

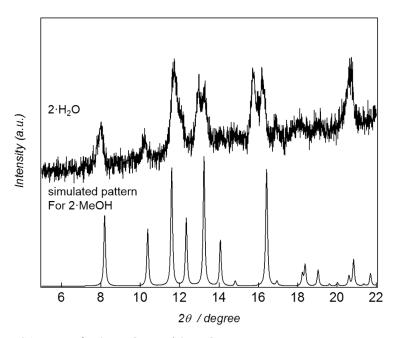


Figure S1 XRPD for 2·MeOH and 2·H₂O

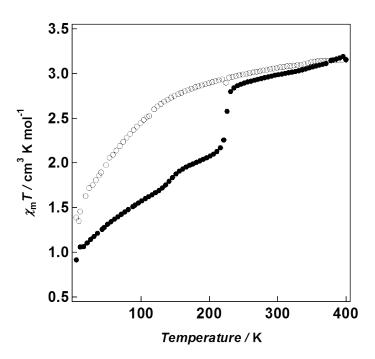


Figure S2 Magnetic properties for $1\cdot 2H_2O$ (filled circle) and its desolvated compound 1 (open circle).