Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting information

The Gold-rich R₃Au₇Sn₃: Establishing the Interdependence between Electronic Features and Physical Properties

Alessia Provino,^{*a,b*} Simon Steinberg, ^{*a,c*} Volodymyr Smetana,^{*a,c*}

Ruta Kulkarni,^e Sudesh K. Dhar,^e Pietro Manfrinetti,^{*,a,b,d} Anja Verena Mudring^{*, a,c}

^a The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011, USA

^b Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy

^c Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA

^d Institute SPIN-CNR, Corso Perrone 24, 16152 Genova, Italy

^e Department of Matter Physics & Materials Science, T.I.F.R. Homi Bhabha Road, Mumbai 400 005, India

Interaction	Distance	No. of	-ICOHP/bond	Interaction	Distance	No. of	-ICOHP/bond	
	[Å]	bonds	[eV/bond]		[Å]	bonds	[eV/bond]	
	Au-Au interactions			Au-Gd interactions				
Au1-Au2	2.960	12	0.9712	Au1-Gd3	2.956	6	0.8706	
Au2-Au2	2.906	6	1.2693	Au2-Gd3	3.025	12	0.7788	
Au2-Au2	3.147	6	0.6790	Au2-Gd3	3.082	12	0.7736	
Au2-Au2	3.339	12	0.3824	Au2-Gd3	3.202	12	0.5638	
Au2-Au2	4.467	12	-0.0219	Au2-Gd3	3.266	12	0.5423	
Au-Sn interactions				Sn-Gd interactions				
Au1-Sn4	2.753	4	1.5987	Sn4-Gd3	3.338	12	0.4127	
Au2-Sn4	2.845	12	1.3823	Sn4-Gd3	4.039	12	0.0742	
Au2-Sn4	2.881	12	1.2218	Sn5-Gd3	3.463	12	0.4282	
Au2-Sn5	2.952	12	1.2291					

Table S1. Distances, multiplicities and -ICOHP/bond for all homo- and heteroatomic interactions within the hexagonal $Gd_3Au_7Sn_3$.

Table S2. Distances, multiplicities and –ICOHP/bond for all homo- and heteroatomic interactionswithin the hexagonal $Y_3Au_7Sn_3$.

Interaction	Distance	No. of	-ICOHP/bond	Interaction	Distance	No. of	-ICOHP/bond	
	[Å]	bonds	[eV/bond]		[Å]	bonds	[eV/bond]	
Au-Au interactions				Au-Y interactions				
Au1-Au2	2.962	12	0.9649	Au1-Y3	2.922	6	0.8530	
Au2-Au2	2.903	6	1.2847	Au2-Y3	3.016	12	0.7416	
Au2-Au2	3.188	6	0.6141	Au2-Y3	3.088	12	0.7242	
Au2-Au2	3.296	12	0.4267	Au2-Y3	3.163	12	0.5589	
Au2-Au2	4.472	12	-0.0210	Au2-Y3	3.250	12	0.5159	
Au-Sn interactions				Sn-Y interactions				
Au1-Sn4	2.754	4	1.6051	Sn4-Y3	3.280	12	0.4256	
Au2-Sn4	2.849	12	1.3724	Sn4-Y3	4.016	12	0.0759	
Au2-Sn4	2.891	12	1.2024	Sn5-Y3	3.501	12	0.3678	
Au2-Sn5	2.907	12	1.3230					

Figure S1. Measured and simulated powder X-ray diffraction patterns of Y₃Au₇Sn₃ and Gd₃Au₇Sn₃.

Figure S2. Plots of the spin-polarized total and projected DOS curves for the AFM spin ordering model 1. The Fermi level is represented by the dotted lines.

Figure S3. Plots of the total and projected DOS curves for Y₃Au₇Sn₃. The Fermi level is represented by the dotted lines.

Figure S4. Site and orbital projected DOS (VASP) for the spin ordering model 1. The Fermi level is represented by the vertical lines.

Figure S5. Site and orbital projected DOS (VASP) for the model 2. The Fermi level is represented by the vertical lines.

Figure S6. **Top**: Illustration of the antiferromagnetic spin ordering model 1 for the layers of the isosceles Gd triangles (T1 and T2). Spin-up gadolinium atoms are represented in green, while spin-down Gd atoms are highlighted in red. The Au@Au₆ clusters (yellow) are embedded within the Gd nets and Sn atoms are omitted for clarity. **Bottom**: T1 as well as T2 layers contribute to the spin-up and spin-down Gd *f* PDOS curves.

Figure S7. **Top**: Illustration of the antiferromagnetic spin ordering model 2 for the layers of the isosceles Gd triangles (T1 and T2). Spin-up gadolinium atoms are represented in green, while spin-down Gd atoms are highlighted in red. The Au@Au₆ clusters (yellow) are embedded within the Gd nets and the Sn atoms are omitted for clarity. **Bottom**: T1 and T2 layers contribute to the spin-down and spin-up Gd *f* PDOS curves, respectively.

Figure S8. Site and orbital projected DOS curves (VASP) for the hexagonal $Y_3Au_7Sn_3$. The Fermi level is represented by the dashed lines.