
Supporting information

Synthesis and characterization of poly(phenylene thioether)s containing pyrimidine units exhibiting high transparency, high refractive indices, and low birefringence

Kazuhiro Nakabayashi, Takayuki Imai, Mao-Chun Fu, Shinji Ando, Tomoya Higashihara, and Mitsuru Ueda

Fig. S1 ¹H (CDCl₃) and ¹³C NMR (DMSO- d_6) spectra of **M1**. The residual CHCl₃ peak is marked.

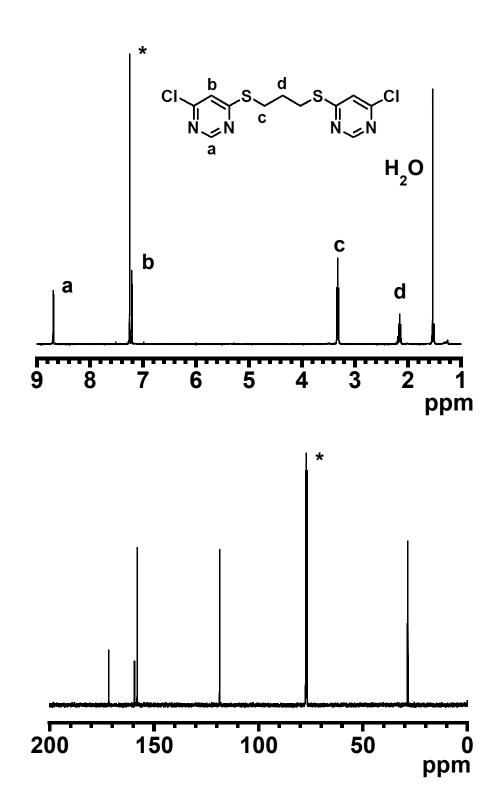


Fig. S2 ¹H and ¹³C NMR spectra of M2 in CDCl₃. The residual CHCl₃ peak is marked.

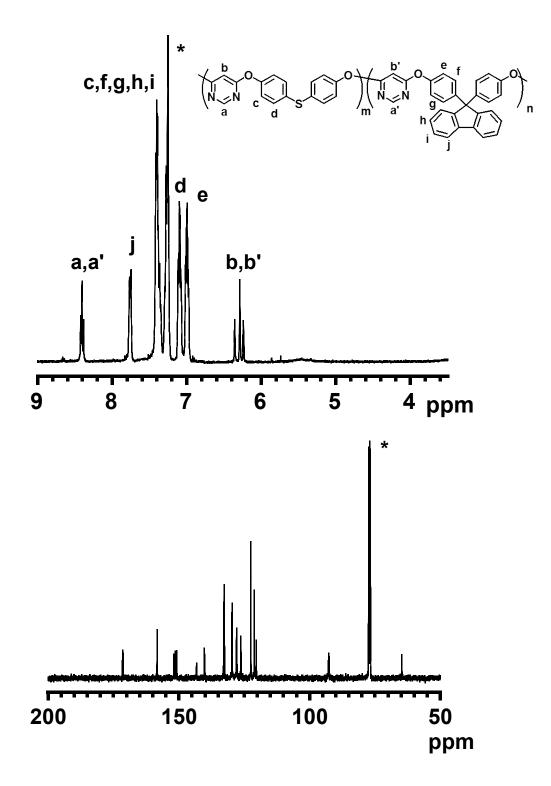


Fig. S3 ¹H and ¹³C NMR spectrum of P2 in CDCl₃. The residual CHCl₃ peak is marked.

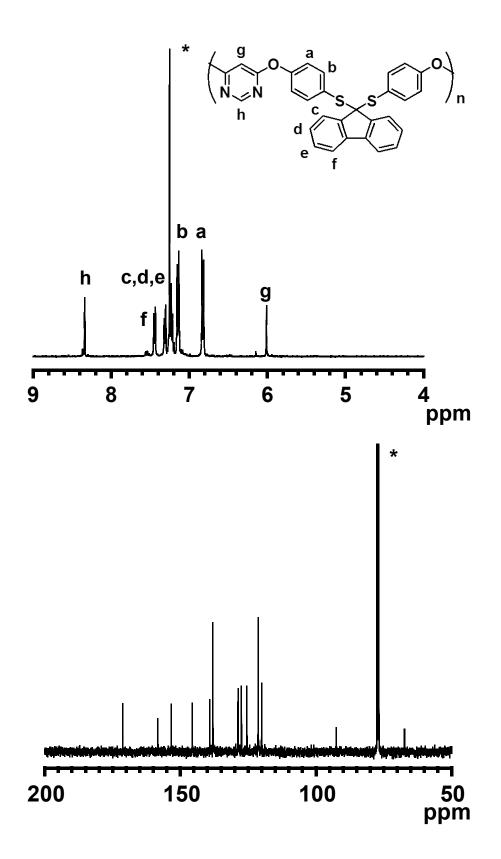


Fig. S4 ¹H and ¹³C NMR spectrum of P3 in CDCl₃. The residual CHCl₃ peak is marked.

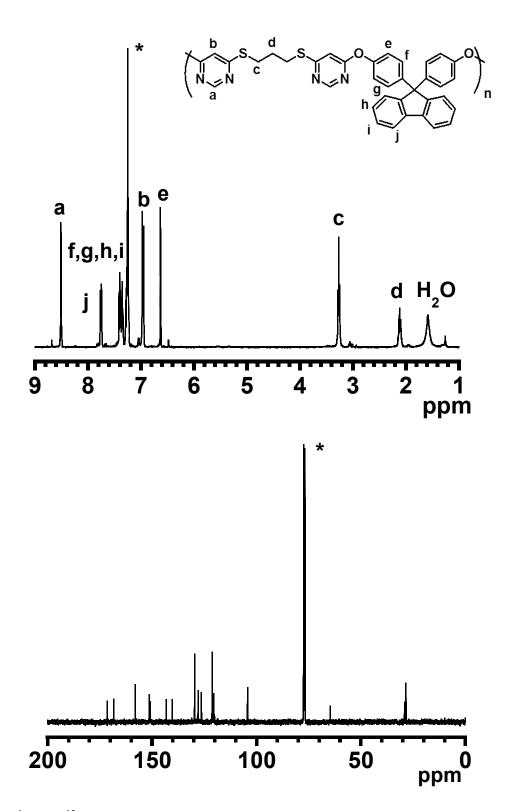


Fig. S5 ¹H and ¹³C NMR spectrum of P4 in CDCl₃. The residual CHCl₃ peak is marked.

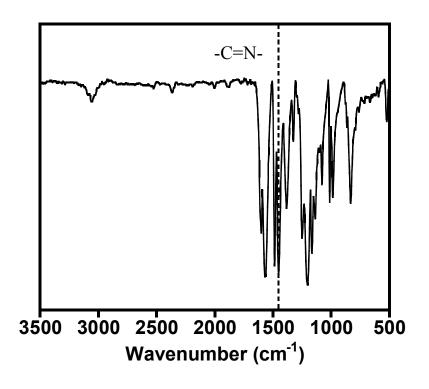


Figure S6. FT-IR spectrum of P1.

Annealed film As-cast film (at 230 °C for 6 h) ch. University, Kanagawa University, Yamag nagawa University, Yamagata University, To ty, Yamagata University, Tokyo Tech. U a University, Tokyo Tech. University, K y, Tokyo Tech. University, Kanagawa I ch. University, Kanagawa University, Yamag nagawa University, Yamagata University, To y, Yamagata University, Tokyo Tech. U a University, Tokyo Tech. University, K y, Tokyo Tech. University, Kanagawa U ch. University, Kanagawa University, Yamag nagawa University, Yamagata University, To y, Yamagata University, Tokyo Tech. L

Figure S7. Images of as-cast and annealed P1 films.

Temp (°C)	Yield (%)	$M_{\rm n}(M_{\rm w}/M_{\rm n})^{\rm b}$	Color of products
100	93	104,000 (2.11)	white
80	92	92,000 (2.07)	white
60	97	56,000 (1.60)	white
	100 80 60	100 93 80 92 60 97	100 93 104,000 (2.11) 80 92 92,000 (2.07)

Table S1. Polymerization results of P2.^a

^aPolymerization was carried out using 3.0 equivalent of K₂CO₃. ^bMeasured by SEC using polystyrene standards in chloroform.

Table S2. Polymerization results of P3.^a

Run	Temp. (°C)	Yield (%)	$M_{\rm n}(M_{\rm w}/M_{\rm n})^{\rm b}$	Color of products
1	100	68	4,000 (1.57)	red
2	80	94	7,200 (2.32)	yellow
3	60	84	31,000 (1.90)	yellow
4 ^c	60	97	38,000 (2.04)	white

^aPolymerization was carried out using 3.0 equivalent of K₂CO₃. ^bMeasured by SEC using polystyrene standards in chloroform. ^cUsing 2.2 equivalent of K₂CO₃.

Table S3	. Polyı	nerization	results	of P4 . ^a
----------	---------	------------	---------	-----------------------------

Run	Temp (°C)	Yield (%)	$M_{\rm n}(M_{\rm w}/M_{\rm n})^{\rm b}$	Color of products
1	120	98	55,000 (1.89)	white
2	100	88	58,000 (2.04)	white
3	80	87	11,000 (1.75)	white

^aPolymerization was carried out using 3.0 equivalent of K₂CO₃. ^bMeasured by SEC using polystyrene standards in chloroform.