Manipulation of the band gap and efficiency of a minimalist push-pull molecular donor for organic solar cells

Yue Jiang^{a,b} Clément Cabanetos,*^b Magali Allain,^b Ping Liu^a and Jean Roncali*^b

Supporting information

Fig. S1 ¹H NMR spectrum of compound 1. 300MHz CDCl₃

Fig. S2. ¹³C NMR spectrum of compound 1. 76 MHz, CDCl₃

Fig. S 3. Cyclic voltammogram of compound 1, 1mM in 0.10 M Bu_4NPF_6/CH_2Cl_2 , scan rate 100 mVs⁻¹, Pt working electrodes.

Fig. S4. UV-Vis absorption spectra of a cell ITO/PEDOT:PSS/vacuum deposited $1/C_{60}$. Before (black) and after 10 min thermal annealing at 80°C.

Fig. S5. UV-Vis absorption spectra of spin-cast and vacuum deposited films of compound 1.

Fig. S6. Current density *vs* voltage curves for "hole-only" devices PEDOT:PSS/donor/gold. Red: compound **1**, black: compound **2**.