Supplementary data

Effect of Fe-doping on structure and magnetoelectric properties of (Ba_{0.85}Ca_{0.15})(Ti_{0.9}Zr_{0.1})O₃ synthesized by chemical route

E.Venkata Ramana^{1*}, F.Figueiras², A.Mahajan³, David Maria Tobaldi⁴, Benilde F.O. Costa⁵, M.P.F.Graça¹ and M.A.Valente¹

¹ I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro-3810 193, Portugal.

² CICECO, University of Aveiro, Aveiro-3810 193, Portugal.

³ School of Engineering and Material Science, Queen Mary University of London, London, E1 4NS, UK.

⁴ Department of Materials and Ceramics Engineering / CICECO, University of Aveiro, Aveiro-3810 193, Portugal.

⁵ CFisUC, Department of Physics, University of Coimbra, Coimbra-3004 516, Portugal.

* Author for correspondence: <u>venkataramanaesk@rediffmail.com</u>

Rietveld Refinement procedure

The starting atomic parameters for the tetragonal and rhombohedral phases, described in the space group (SG) *P4mm*, and *R*3m, respectively, were taken from Kwei *et al.* ¹. In the Rietveld refinements, were refined the following parameters: scale-factors and zero-point; the

background profile was modelled using a 10th order shifted Chebyshev polynomial function; unit cell parameters and profile coefficients – one Gaussian (G_w), an angle-independent term and two Lorentzian terms L_x and L_y – peak correction for asymmetry, and sample displacement effects. Furthermore, atomic positions and isotropic displacement parameters (U_{iso}) were also refined; occupancies of Ba and Ca were constrained to be 0.85 and 0.15, respectively, in all the refinements, according to the stoichiometry of the synthesis. Furthermore, the same atomic positions and U_{iso} were given to these two atoms, and restrained to be identical. Similarly, following the stoichiometry of the synthesis, the occupancies of the BO_6 octahedral site were constrained to be 0.9 and 0.1 for Ti and Zr in BCTZO sample (restraining their atomic position and U_{iso} to be the same); likewise, in samples were iron was present, the occupancies were also constrained to be the same as those of the synthesis, *i.e.* 0.88, 0.02, and 0.1 for Ti, Fe, and Zr, respectively, in case of Fe-2 (with Ti, Zr, and Fe having restrained the same atomic positions and U_{iso}).

Once the bond lengths and bond angles were calculated from the listing of distances and bond angles from GSAS, they were used to obtain a 3D rendering of the tetragonal phase, by means of the VESTA software package ². Also, the distortion index (*D*) and quadratic elongation (QE) of the BO_6 octahedral site in the tetragonal phase were calculated, according to the formalisms of Baur ³, and Robinson *et al.* ⁴, respectively.

- 1. G.H. Kwei, A.C. Lawson S.J.L. Billinge and S.W. Cheong, J. Phys. Chem., 1993, 97, 2368.
- 2. K. Momma, F. Izumi, J. Appl. Crystallogr., 2008, 41, 653.
- 3. W.H. Baur, Acta Crystallogr. B., 1974, 30, 1195.
- 4. K. Robinson, G.V. Gibbs, P.H. Ribbe, Science., 1971, 172, 567.